Proof of reciprocal of a Jacobian
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by
If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then
$f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$
Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and
$J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$
Now the second book I read instead gives
$f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$
Where
$J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$
Now for transformation of 1 variable I know that
$fracdxdy=(fracdydx)^-1$
But for 2 or more variable can someone give me a proof that
$J_1=J_2^-1$
matrices statistics density-function jacobian
add a comment |Â
up vote
0
down vote
favorite
So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by
If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then
$f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$
Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and
$J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$
Now the second book I read instead gives
$f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$
Where
$J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$
Now for transformation of 1 variable I know that
$fracdxdy=(fracdydx)^-1$
But for 2 or more variable can someone give me a proof that
$J_1=J_2^-1$
matrices statistics density-function jacobian
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by
If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then
$f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$
Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and
$J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$
Now the second book I read instead gives
$f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$
Where
$J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$
Now for transformation of 1 variable I know that
$fracdxdy=(fracdydx)^-1$
But for 2 or more variable can someone give me a proof that
$J_1=J_2^-1$
matrices statistics density-function jacobian
So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by
If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then
$f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$
Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and
$J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$
Now the second book I read instead gives
$f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$
Where
$J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$
Now for transformation of 1 variable I know that
$fracdxdy=(fracdydx)^-1$
But for 2 or more variable can someone give me a proof that
$J_1=J_2^-1$
matrices statistics density-function jacobian
asked Jul 22 at 13:15
Germaniac
142
142
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859385%2fproof-of-reciprocal-of-a-jacobian%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password