Proof of reciprocal of a Jacobian

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by



If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then



$f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$



Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and



$J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$



Now the second book I read instead gives



$f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$



Where



$J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$



Now for transformation of 1 variable I know that



$fracdxdy=(fracdydx)^-1$



But for 2 or more variable can someone give me a proof that



$J_1=J_2^-1$







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by



    If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then



    $f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$



    Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and



    $J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$



    Now the second book I read instead gives



    $f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$



    Where



    $J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$



    Now for transformation of 1 variable I know that



    $fracdxdy=(fracdydx)^-1$



    But for 2 or more variable can someone give me a proof that



    $J_1=J_2^-1$







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by



      If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then



      $f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$



      Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and



      $J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$



      Now the second book I read instead gives



      $f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$



      Where



      $J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$



      Now for transformation of 1 variable I know that



      $fracdxdy=(fracdydx)^-1$



      But for 2 or more variable can someone give me a proof that



      $J_1=J_2^-1$







      share|cite|improve this question











      So I was reading 2 different statistics books, I read about the PDF variable transformation and one book cited that you can do it by



      If $Y_i=u_i(X_1,X_2,...,X_n)$ where $i=1,2,...,n$, then



      $f_Y(y_1,y_2,...y_n)=f_X(x_1,x_2,...,x_n)|J_1|$



      Where $f_X$ and $f_Y$ are the joint PDF of $X_i$'s and $Y_i$'s respectively and



      $J_1=beginvmatrixfracpartial x_1partial y_1&fracpartial x_1partial y_2&cdots&fracpartial x_1partial y_n\fracpartial x_2partial y_1&fracpartial x_2partial y_2&cdots&fracpartial x_2partial y_n\vdots&vdots&ddots&vdots\fracpartial x_npartial y_1&fracpartial x_npartial y_2&cdots&fracpartial x_npartial y_nendvmatrix$



      Now the second book I read instead gives



      $f_Y(y_1,y_2,...,y_n)=f_X(x_1,x_2,...,x_n)|J_2|^-1$



      Where



      $J_2=beginvmatrixfracpartial y_1partial x_1&fracpartial y_1partial x_2&cdots&fracpartial y_1partial x_n\fracpartial y_2partial x_1&fracpartial y_2partial x_2&cdots&fracpartial y_2partial x_n\vdots&vdots&ddots&vdots\fracpartial y_npartial x_1&fracpartial y_npartial x_2&cdots&fracpartial y_npartial x_nendvmatrix$



      Now for transformation of 1 variable I know that



      $fracdxdy=(fracdydx)^-1$



      But for 2 or more variable can someone give me a proof that



      $J_1=J_2^-1$









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 22 at 13:15









      Germaniac

      142




      142

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859385%2fproof-of-reciprocal-of-a-jacobian%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859385%2fproof-of-reciprocal-of-a-jacobian%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?