Binomial series for $|z|=1$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












The binomial series is given by
$$(*) quad (1-z)^-alpha=sum_k=0^inftyfracGamma(k+alpha)Gamma(alpha), k! , z^k; ,, |z|<1,$$
where $alpha in mathbb C$ is an arbitrary complex number. My question is that the identity $(*)$ is true for $|z|=1$ ?



In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$, i.e, $(1-xi)^-1=...; xi in mathbb S^1$.







share|cite|improve this question

















  • 2




    The convergence on the unit circle depends on what $alpha$ is, and what $z$ is.
    – Lord Shark the Unknown
    Aug 2 at 10:32










  • if $z in mathbfR$ and $|z| = 1$ then LHS is 0, while RHS is some positive sum.
    – pointguard0
    Aug 2 at 10:33






  • 3




    For example, the series for $(1-z)^-1$ diverges for $|z|=1$ but the series for $(1-z)^-1/2$ converges for $z=-1$.
    – GEdgar
    Aug 2 at 10:36











  • In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$.
    – Z. Alfata
    Aug 2 at 10:40











  • @Z.Alfata When $alpha=-1$ then $Gamma(alpha)$ doesn't exist...
    – Lord Shark the Unknown
    Aug 2 at 10:42














up vote
0
down vote

favorite
1












The binomial series is given by
$$(*) quad (1-z)^-alpha=sum_k=0^inftyfracGamma(k+alpha)Gamma(alpha), k! , z^k; ,, |z|<1,$$
where $alpha in mathbb C$ is an arbitrary complex number. My question is that the identity $(*)$ is true for $|z|=1$ ?



In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$, i.e, $(1-xi)^-1=...; xi in mathbb S^1$.







share|cite|improve this question

















  • 2




    The convergence on the unit circle depends on what $alpha$ is, and what $z$ is.
    – Lord Shark the Unknown
    Aug 2 at 10:32










  • if $z in mathbfR$ and $|z| = 1$ then LHS is 0, while RHS is some positive sum.
    – pointguard0
    Aug 2 at 10:33






  • 3




    For example, the series for $(1-z)^-1$ diverges for $|z|=1$ but the series for $(1-z)^-1/2$ converges for $z=-1$.
    – GEdgar
    Aug 2 at 10:36











  • In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$.
    – Z. Alfata
    Aug 2 at 10:40











  • @Z.Alfata When $alpha=-1$ then $Gamma(alpha)$ doesn't exist...
    – Lord Shark the Unknown
    Aug 2 at 10:42












up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





The binomial series is given by
$$(*) quad (1-z)^-alpha=sum_k=0^inftyfracGamma(k+alpha)Gamma(alpha), k! , z^k; ,, |z|<1,$$
where $alpha in mathbb C$ is an arbitrary complex number. My question is that the identity $(*)$ is true for $|z|=1$ ?



In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$, i.e, $(1-xi)^-1=...; xi in mathbb S^1$.







share|cite|improve this question













The binomial series is given by
$$(*) quad (1-z)^-alpha=sum_k=0^inftyfracGamma(k+alpha)Gamma(alpha), k! , z^k; ,, |z|<1,$$
where $alpha in mathbb C$ is an arbitrary complex number. My question is that the identity $(*)$ is true for $|z|=1$ ?



In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$, i.e, $(1-xi)^-1=...; xi in mathbb S^1$.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 2 at 10:43
























asked Aug 2 at 10:30









Z. Alfata

864413




864413







  • 2




    The convergence on the unit circle depends on what $alpha$ is, and what $z$ is.
    – Lord Shark the Unknown
    Aug 2 at 10:32










  • if $z in mathbfR$ and $|z| = 1$ then LHS is 0, while RHS is some positive sum.
    – pointguard0
    Aug 2 at 10:33






  • 3




    For example, the series for $(1-z)^-1$ diverges for $|z|=1$ but the series for $(1-z)^-1/2$ converges for $z=-1$.
    – GEdgar
    Aug 2 at 10:36











  • In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$.
    – Z. Alfata
    Aug 2 at 10:40











  • @Z.Alfata When $alpha=-1$ then $Gamma(alpha)$ doesn't exist...
    – Lord Shark the Unknown
    Aug 2 at 10:42












  • 2




    The convergence on the unit circle depends on what $alpha$ is, and what $z$ is.
    – Lord Shark the Unknown
    Aug 2 at 10:32










  • if $z in mathbfR$ and $|z| = 1$ then LHS is 0, while RHS is some positive sum.
    – pointguard0
    Aug 2 at 10:33






  • 3




    For example, the series for $(1-z)^-1$ diverges for $|z|=1$ but the series for $(1-z)^-1/2$ converges for $z=-1$.
    – GEdgar
    Aug 2 at 10:36











  • In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$.
    – Z. Alfata
    Aug 2 at 10:40











  • @Z.Alfata When $alpha=-1$ then $Gamma(alpha)$ doesn't exist...
    – Lord Shark the Unknown
    Aug 2 at 10:42







2




2




The convergence on the unit circle depends on what $alpha$ is, and what $z$ is.
– Lord Shark the Unknown
Aug 2 at 10:32




The convergence on the unit circle depends on what $alpha$ is, and what $z$ is.
– Lord Shark the Unknown
Aug 2 at 10:32












if $z in mathbfR$ and $|z| = 1$ then LHS is 0, while RHS is some positive sum.
– pointguard0
Aug 2 at 10:33




if $z in mathbfR$ and $|z| = 1$ then LHS is 0, while RHS is some positive sum.
– pointguard0
Aug 2 at 10:33




3




3




For example, the series for $(1-z)^-1$ diverges for $|z|=1$ but the series for $(1-z)^-1/2$ converges for $z=-1$.
– GEdgar
Aug 2 at 10:36





For example, the series for $(1-z)^-1$ diverges for $|z|=1$ but the series for $(1-z)^-1/2$ converges for $z=-1$.
– GEdgar
Aug 2 at 10:36













In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$.
– Z. Alfata
Aug 2 at 10:40





In my case, $zin mathbb S^1$ the unit circle in $mathbb C$ and $alpha in mathbb R$, precisely $alpha=1$.
– Z. Alfata
Aug 2 at 10:40













@Z.Alfata When $alpha=-1$ then $Gamma(alpha)$ doesn't exist...
– Lord Shark the Unknown
Aug 2 at 10:42




@Z.Alfata When $alpha=-1$ then $Gamma(alpha)$ doesn't exist...
– Lord Shark the Unknown
Aug 2 at 10:42















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869929%2fbinomial-series-for-z-1%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869929%2fbinomial-series-for-z-1%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?

What is the equation of a 3D cone with generalised tilt?