Whats Wrong with this approach?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.



$lim_xto0 (frac2+cosxx^3sinx−frac3x^4)$



solving the above as follows:



$=lim_xto0(frac2x^3sinx+fraccosxx^3sinx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4+frac1x^4−frac3x^4)$



$=lim_xto0(frac3x^4−frac3x^4)$



$=lim_xto0(0)$



$=0$







share|cite|improve this question















  • 2




    How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xx−frac3x^4right)$ to the next line?
    – Lord Shark the Unknown
    Aug 2 at 8:13







  • 3




    You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
    – Mauro ALLEGRANZA
    Aug 2 at 8:14










  • Using individual limits on $x^4$ and $fracsinxx$
    – Ashwani Bhat
    Aug 2 at 8:15






  • 3




    You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
    – Kavi Rama Murthy
    Aug 2 at 8:24















up vote
0
down vote

favorite












I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.



$lim_xto0 (frac2+cosxx^3sinx−frac3x^4)$



solving the above as follows:



$=lim_xto0(frac2x^3sinx+fraccosxx^3sinx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4+frac1x^4−frac3x^4)$



$=lim_xto0(frac3x^4−frac3x^4)$



$=lim_xto0(0)$



$=0$







share|cite|improve this question















  • 2




    How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xx−frac3x^4right)$ to the next line?
    – Lord Shark the Unknown
    Aug 2 at 8:13







  • 3




    You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
    – Mauro ALLEGRANZA
    Aug 2 at 8:14










  • Using individual limits on $x^4$ and $fracsinxx$
    – Ashwani Bhat
    Aug 2 at 8:15






  • 3




    You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
    – Kavi Rama Murthy
    Aug 2 at 8:24













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.



$lim_xto0 (frac2+cosxx^3sinx−frac3x^4)$



solving the above as follows:



$=lim_xto0(frac2x^3sinx+fraccosxx^3sinx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4+frac1x^4−frac3x^4)$



$=lim_xto0(frac3x^4−frac3x^4)$



$=lim_xto0(0)$



$=0$







share|cite|improve this question











I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.



$lim_xto0 (frac2+cosxx^3sinx−frac3x^4)$



solving the above as follows:



$=lim_xto0(frac2x^3sinx+fraccosxx^3sinx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxx−frac3x^4)$



$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxx−frac3x^4)$



$=lim_xto0(frac2x^4+frac1x^4−frac3x^4)$



$=lim_xto0(frac3x^4−frac3x^4)$



$=lim_xto0(0)$



$=0$









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Aug 2 at 8:10









Ashwani Bhat

1




1







  • 2




    How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xx−frac3x^4right)$ to the next line?
    – Lord Shark the Unknown
    Aug 2 at 8:13







  • 3




    You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
    – Mauro ALLEGRANZA
    Aug 2 at 8:14










  • Using individual limits on $x^4$ and $fracsinxx$
    – Ashwani Bhat
    Aug 2 at 8:15






  • 3




    You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
    – Kavi Rama Murthy
    Aug 2 at 8:24













  • 2




    How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xx−frac3x^4right)$ to the next line?
    – Lord Shark the Unknown
    Aug 2 at 8:13







  • 3




    You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
    – Mauro ALLEGRANZA
    Aug 2 at 8:14










  • Using individual limits on $x^4$ and $fracsinxx$
    – Ashwani Bhat
    Aug 2 at 8:15






  • 3




    You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
    – Kavi Rama Murthy
    Aug 2 at 8:24








2




2




How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xx−frac3x^4right)$ to the next line?
– Lord Shark the Unknown
Aug 2 at 8:13





How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xx−frac3x^4right)$ to the next line?
– Lord Shark the Unknown
Aug 2 at 8:13





3




3




You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
– Mauro ALLEGRANZA
Aug 2 at 8:14




You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
– Mauro ALLEGRANZA
Aug 2 at 8:14












Using individual limits on $x^4$ and $fracsinxx$
– Ashwani Bhat
Aug 2 at 8:15




Using individual limits on $x^4$ and $fracsinxx$
– Ashwani Bhat
Aug 2 at 8:15




3




3




You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
– Kavi Rama Murthy
Aug 2 at 8:24





You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
– Kavi Rama Murthy
Aug 2 at 8:24
















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869811%2fwhats-wrong-with-this-approach%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869811%2fwhats-wrong-with-this-approach%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?