Whats Wrong with this approach?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.
$lim_xto0 (frac2+cosxx^3sinxâÂÂfrac3x^4)$
solving the above as follows:
$=lim_xto0(frac2x^3sinx+fraccosxx^3sinxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4+frac1x^4âÂÂfrac3x^4)$
$=lim_xto0(frac3x^4âÂÂfrac3x^4)$
$=lim_xto0(0)$
$=0$
calculus limits
add a comment |Â
up vote
0
down vote
favorite
I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.
$lim_xto0 (frac2+cosxx^3sinxâÂÂfrac3x^4)$
solving the above as follows:
$=lim_xto0(frac2x^3sinx+fraccosxx^3sinxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4+frac1x^4âÂÂfrac3x^4)$
$=lim_xto0(frac3x^4âÂÂfrac3x^4)$
$=lim_xto0(0)$
$=0$
calculus limits
2
How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xxâÂÂfrac3x^4right)$ to the next line?
â Lord Shark the Unknown
Aug 2 at 8:13
3
You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
â Mauro ALLEGRANZA
Aug 2 at 8:14
Using individual limits on $x^4$ and $fracsinxx$
â Ashwani Bhat
Aug 2 at 8:15
3
You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
â Kavi Rama Murthy
Aug 2 at 8:24
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.
$lim_xto0 (frac2+cosxx^3sinxâÂÂfrac3x^4)$
solving the above as follows:
$=lim_xto0(frac2x^3sinx+fraccosxx^3sinxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4+frac1x^4âÂÂfrac3x^4)$
$=lim_xto0(frac3x^4âÂÂfrac3x^4)$
$=lim_xto0(0)$
$=0$
calculus limits
I saw this question few moments back in here. The answer to this question is not 0 and is proceeded using Taylor expansion. I want to know where the error is in the below approach.
$lim_xto0 (frac2+cosxx^3sinxâÂÂfrac3x^4)$
solving the above as follows:
$=lim_xto0(frac2x^3sinx+fraccosxx^3sinxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+fraccosxx^4fracsinxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4fracsinxx+frac1x^4fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4lim_xto0fracsinxx+frac1x^4lim_xto0fractanxxâÂÂfrac3x^4)$
$=lim_xto0(frac2x^4+frac1x^4âÂÂfrac3x^4)$
$=lim_xto0(frac3x^4âÂÂfrac3x^4)$
$=lim_xto0(0)$
$=0$
calculus limits
asked Aug 2 at 8:10
Ashwani Bhat
1
1
2
How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xxâÂÂfrac3x^4right)$ to the next line?
â Lord Shark the Unknown
Aug 2 at 8:13
3
You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
â Mauro ALLEGRANZA
Aug 2 at 8:14
Using individual limits on $x^4$ and $fracsinxx$
â Ashwani Bhat
Aug 2 at 8:15
3
You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
â Kavi Rama Murthy
Aug 2 at 8:24
add a comment |Â
2
How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xxâÂÂfrac3x^4right)$ to the next line?
â Lord Shark the Unknown
Aug 2 at 8:13
3
You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
â Mauro ALLEGRANZA
Aug 2 at 8:14
Using individual limits on $x^4$ and $fracsinxx$
â Ashwani Bhat
Aug 2 at 8:15
3
You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
â Kavi Rama Murthy
Aug 2 at 8:24
2
2
How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xxâÂÂfrac3x^4right)$ to the next line?
â Lord Shark the Unknown
Aug 2 at 8:13
How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xxâÂÂfrac3x^4right)$ to the next line?
â Lord Shark the Unknown
Aug 2 at 8:13
3
3
You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
â Mauro ALLEGRANZA
Aug 2 at 8:14
You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
â Mauro ALLEGRANZA
Aug 2 at 8:14
Using individual limits on $x^4$ and $fracsinxx$
â Ashwani Bhat
Aug 2 at 8:15
Using individual limits on $x^4$ and $fracsinxx$
â Ashwani Bhat
Aug 2 at 8:15
3
3
You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
â Kavi Rama Murthy
Aug 2 at 8:24
You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
â Kavi Rama Murthy
Aug 2 at 8:24
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2869811%2fwhats-wrong-with-this-approach%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
How do you go from $lim_xto0left(frac2x^4fracsin xx+frac1x^4fractan xxâÂÂfrac3x^4right)$ to the next line?
â Lord Shark the Unknown
Aug 2 at 8:13
3
You cannot "move out" $x^4$ from limit, because the limit is about $x$ itself.
â Mauro ALLEGRANZA
Aug 2 at 8:14
Using individual limits on $x^4$ and $fracsinxx$
â Ashwani Bhat
Aug 2 at 8:15
3
You will have to have limit for $x^4$ also which makes the first teem infinite. You cannot write $lim frac sin x x=lim frac lim sin x x=lim frac 0 x=0$, right?
â Kavi Rama Murthy
Aug 2 at 8:24