Comparing elements of sets

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $a_1, a_2, a_3, a_4$ be real numbers.



Consider the following sets



$$
mathcalU_1equiv -a_1, a_1, -a_2, a_2, 0, infty, -infty
$$
$$
mathcalU_2equiv -a_3, a_3, -a_4, a_4, 0, infty, -infty
$$
$$
mathcalU_3equiv (a_3-a_1), (a_4-a_2), infty, (-a_3+a_1), (-a_4+a_2), -infty, 0
$$
$$
mathcalUequiv mathcalU_1times mathcalU_2times mathcalU_3
$$
where $times$ denotes the Cartesian product. $mathcalU_1, mathcalU_2, mathcalU_3$ have cardinality $7$.



Let $uequiv (u_1, u_2, u_3)$ denote a generic element (triplet) of $mathcalU$ with $u_1in mathcalU_1$, $u_2in mathcalU_2$, $u_3in mathcalU_3$.



Take any pair of triplets $u, u'in mathcalU$. In what follows $uleq u'$ means that $u_1leq u'_1$,$u_2leq u'_2$,$u_3leq u'_3$.



Take any triplet $uin mathcalU$. In what follows, $(i_u_1, j_u_2, h_u_3)$ denote the position of $u_1, u_2, u_3$ respectively in $mathcalU_1, mathcalU_2, mathcalU_3$ For example, suppose $uequiv (a_1, a_4, 0)$; then, $(i_u_1, j_u_2, h_u_3)=(2,4,7)$.




Fix $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$. Suppose we have an algorithm that creates the following two matrices



1) $D(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $uleq u'$



1) $E(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $ugeq u'$.



[Remark: when $u=u'$ then $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ appear in $D(a)$ and $E(a)$]




Question: Take any $tildeain mathbbR^4$ with $aneq tildea$. I want to find some sufficient (and possibly also necessary) conditions such that $D(a)=D(tildea)$ and $E(a)=E(tildea)$.




My thoughts After many attempts I realised the following:
Take $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$ and suppose $a$ is such that
$$
(star)
begincases
-infty< a_1= -a_2<0< a_2= -a_1<infty\
-infty< -a_4< a_3<0< -a_3< a_4<infty\
-infty< a_2-a_4< a_1-a_3<0< a_3-a_1< a_4-a_2<infty\
endcases
$$
Then, every $tildeaequiv (tildea_1, tildea_2, tildea_3, tildea_4)in mathbbR^4$ such that
$$
begincases
-infty< tildea_1= -tildea_2<0< tildea_2= -tildea_1<infty\
-infty< -tildea_4< tildea_3<0< -tildea_3< tildea_4<infty\
-infty< tildea_2-tildea_4< tildea_1-tildea_3<0< tildea_3-tildea_1< tildea_4-tildea_2<infty\
endcases
$$
will have $D(a)=D(tildea)$ and $E(a)=E(tildea)$. This can be generalised to any ordering of $a$ in $(star)$: if $tildea$ respects the same ordering as $a$, then $D(a)=D(tildea)$ and $E(a)=E(tildea)$.



Is this correct? Can you think of other sufficient conditions? Can I get some sufficient and necessary conditions?







share|cite|improve this question















This question has an open bounty worth +100
reputation from TEX ending ending at 2018-08-11 19:00:44Z">in 4 days.


The question is widely applicable to a large audience. A detailed canonical answer is required to address all the concerns.















  • If $V_1,V_2,V_3$ have cardinality 7, then $V$ doesn't.
    – Gerry Myerson
    Aug 2 at 12:41










  • Yes, sorry, my mistake
    – TEX
    Aug 2 at 12:45














up vote
1
down vote

favorite












Let $a_1, a_2, a_3, a_4$ be real numbers.



Consider the following sets



$$
mathcalU_1equiv -a_1, a_1, -a_2, a_2, 0, infty, -infty
$$
$$
mathcalU_2equiv -a_3, a_3, -a_4, a_4, 0, infty, -infty
$$
$$
mathcalU_3equiv (a_3-a_1), (a_4-a_2), infty, (-a_3+a_1), (-a_4+a_2), -infty, 0
$$
$$
mathcalUequiv mathcalU_1times mathcalU_2times mathcalU_3
$$
where $times$ denotes the Cartesian product. $mathcalU_1, mathcalU_2, mathcalU_3$ have cardinality $7$.



Let $uequiv (u_1, u_2, u_3)$ denote a generic element (triplet) of $mathcalU$ with $u_1in mathcalU_1$, $u_2in mathcalU_2$, $u_3in mathcalU_3$.



Take any pair of triplets $u, u'in mathcalU$. In what follows $uleq u'$ means that $u_1leq u'_1$,$u_2leq u'_2$,$u_3leq u'_3$.



Take any triplet $uin mathcalU$. In what follows, $(i_u_1, j_u_2, h_u_3)$ denote the position of $u_1, u_2, u_3$ respectively in $mathcalU_1, mathcalU_2, mathcalU_3$ For example, suppose $uequiv (a_1, a_4, 0)$; then, $(i_u_1, j_u_2, h_u_3)=(2,4,7)$.




Fix $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$. Suppose we have an algorithm that creates the following two matrices



1) $D(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $uleq u'$



1) $E(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $ugeq u'$.



[Remark: when $u=u'$ then $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ appear in $D(a)$ and $E(a)$]




Question: Take any $tildeain mathbbR^4$ with $aneq tildea$. I want to find some sufficient (and possibly also necessary) conditions such that $D(a)=D(tildea)$ and $E(a)=E(tildea)$.




My thoughts After many attempts I realised the following:
Take $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$ and suppose $a$ is such that
$$
(star)
begincases
-infty< a_1= -a_2<0< a_2= -a_1<infty\
-infty< -a_4< a_3<0< -a_3< a_4<infty\
-infty< a_2-a_4< a_1-a_3<0< a_3-a_1< a_4-a_2<infty\
endcases
$$
Then, every $tildeaequiv (tildea_1, tildea_2, tildea_3, tildea_4)in mathbbR^4$ such that
$$
begincases
-infty< tildea_1= -tildea_2<0< tildea_2= -tildea_1<infty\
-infty< -tildea_4< tildea_3<0< -tildea_3< tildea_4<infty\
-infty< tildea_2-tildea_4< tildea_1-tildea_3<0< tildea_3-tildea_1< tildea_4-tildea_2<infty\
endcases
$$
will have $D(a)=D(tildea)$ and $E(a)=E(tildea)$. This can be generalised to any ordering of $a$ in $(star)$: if $tildea$ respects the same ordering as $a$, then $D(a)=D(tildea)$ and $E(a)=E(tildea)$.



Is this correct? Can you think of other sufficient conditions? Can I get some sufficient and necessary conditions?







share|cite|improve this question















This question has an open bounty worth +100
reputation from TEX ending ending at 2018-08-11 19:00:44Z">in 4 days.


The question is widely applicable to a large audience. A detailed canonical answer is required to address all the concerns.















  • If $V_1,V_2,V_3$ have cardinality 7, then $V$ doesn't.
    – Gerry Myerson
    Aug 2 at 12:41










  • Yes, sorry, my mistake
    – TEX
    Aug 2 at 12:45












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $a_1, a_2, a_3, a_4$ be real numbers.



Consider the following sets



$$
mathcalU_1equiv -a_1, a_1, -a_2, a_2, 0, infty, -infty
$$
$$
mathcalU_2equiv -a_3, a_3, -a_4, a_4, 0, infty, -infty
$$
$$
mathcalU_3equiv (a_3-a_1), (a_4-a_2), infty, (-a_3+a_1), (-a_4+a_2), -infty, 0
$$
$$
mathcalUequiv mathcalU_1times mathcalU_2times mathcalU_3
$$
where $times$ denotes the Cartesian product. $mathcalU_1, mathcalU_2, mathcalU_3$ have cardinality $7$.



Let $uequiv (u_1, u_2, u_3)$ denote a generic element (triplet) of $mathcalU$ with $u_1in mathcalU_1$, $u_2in mathcalU_2$, $u_3in mathcalU_3$.



Take any pair of triplets $u, u'in mathcalU$. In what follows $uleq u'$ means that $u_1leq u'_1$,$u_2leq u'_2$,$u_3leq u'_3$.



Take any triplet $uin mathcalU$. In what follows, $(i_u_1, j_u_2, h_u_3)$ denote the position of $u_1, u_2, u_3$ respectively in $mathcalU_1, mathcalU_2, mathcalU_3$ For example, suppose $uequiv (a_1, a_4, 0)$; then, $(i_u_1, j_u_2, h_u_3)=(2,4,7)$.




Fix $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$. Suppose we have an algorithm that creates the following two matrices



1) $D(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $uleq u'$



1) $E(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $ugeq u'$.



[Remark: when $u=u'$ then $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ appear in $D(a)$ and $E(a)$]




Question: Take any $tildeain mathbbR^4$ with $aneq tildea$. I want to find some sufficient (and possibly also necessary) conditions such that $D(a)=D(tildea)$ and $E(a)=E(tildea)$.




My thoughts After many attempts I realised the following:
Take $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$ and suppose $a$ is such that
$$
(star)
begincases
-infty< a_1= -a_2<0< a_2= -a_1<infty\
-infty< -a_4< a_3<0< -a_3< a_4<infty\
-infty< a_2-a_4< a_1-a_3<0< a_3-a_1< a_4-a_2<infty\
endcases
$$
Then, every $tildeaequiv (tildea_1, tildea_2, tildea_3, tildea_4)in mathbbR^4$ such that
$$
begincases
-infty< tildea_1= -tildea_2<0< tildea_2= -tildea_1<infty\
-infty< -tildea_4< tildea_3<0< -tildea_3< tildea_4<infty\
-infty< tildea_2-tildea_4< tildea_1-tildea_3<0< tildea_3-tildea_1< tildea_4-tildea_2<infty\
endcases
$$
will have $D(a)=D(tildea)$ and $E(a)=E(tildea)$. This can be generalised to any ordering of $a$ in $(star)$: if $tildea$ respects the same ordering as $a$, then $D(a)=D(tildea)$ and $E(a)=E(tildea)$.



Is this correct? Can you think of other sufficient conditions? Can I get some sufficient and necessary conditions?







share|cite|improve this question













Let $a_1, a_2, a_3, a_4$ be real numbers.



Consider the following sets



$$
mathcalU_1equiv -a_1, a_1, -a_2, a_2, 0, infty, -infty
$$
$$
mathcalU_2equiv -a_3, a_3, -a_4, a_4, 0, infty, -infty
$$
$$
mathcalU_3equiv (a_3-a_1), (a_4-a_2), infty, (-a_3+a_1), (-a_4+a_2), -infty, 0
$$
$$
mathcalUequiv mathcalU_1times mathcalU_2times mathcalU_3
$$
where $times$ denotes the Cartesian product. $mathcalU_1, mathcalU_2, mathcalU_3$ have cardinality $7$.



Let $uequiv (u_1, u_2, u_3)$ denote a generic element (triplet) of $mathcalU$ with $u_1in mathcalU_1$, $u_2in mathcalU_2$, $u_3in mathcalU_3$.



Take any pair of triplets $u, u'in mathcalU$. In what follows $uleq u'$ means that $u_1leq u'_1$,$u_2leq u'_2$,$u_3leq u'_3$.



Take any triplet $uin mathcalU$. In what follows, $(i_u_1, j_u_2, h_u_3)$ denote the position of $u_1, u_2, u_3$ respectively in $mathcalU_1, mathcalU_2, mathcalU_3$ For example, suppose $uequiv (a_1, a_4, 0)$; then, $(i_u_1, j_u_2, h_u_3)=(2,4,7)$.




Fix $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$. Suppose we have an algorithm that creates the following two matrices



1) $D(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $uleq u'$



1) $E(a)$ listing $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ $forall u, u'in mathcalU$ such that $ugeq u'$.



[Remark: when $u=u'$ then $(i_u_1, j_u_2, h_u_3),(i_u'_1, j_u'_2, h_u'_3)$ appear in $D(a)$ and $E(a)$]




Question: Take any $tildeain mathbbR^4$ with $aneq tildea$. I want to find some sufficient (and possibly also necessary) conditions such that $D(a)=D(tildea)$ and $E(a)=E(tildea)$.




My thoughts After many attempts I realised the following:
Take $aequiv (a_1, a_2, a_3, a_4)in mathbbR^4$ and suppose $a$ is such that
$$
(star)
begincases
-infty< a_1= -a_2<0< a_2= -a_1<infty\
-infty< -a_4< a_3<0< -a_3< a_4<infty\
-infty< a_2-a_4< a_1-a_3<0< a_3-a_1< a_4-a_2<infty\
endcases
$$
Then, every $tildeaequiv (tildea_1, tildea_2, tildea_3, tildea_4)in mathbbR^4$ such that
$$
begincases
-infty< tildea_1= -tildea_2<0< tildea_2= -tildea_1<infty\
-infty< -tildea_4< tildea_3<0< -tildea_3< tildea_4<infty\
-infty< tildea_2-tildea_4< tildea_1-tildea_3<0< tildea_3-tildea_1< tildea_4-tildea_2<infty\
endcases
$$
will have $D(a)=D(tildea)$ and $E(a)=E(tildea)$. This can be generalised to any ordering of $a$ in $(star)$: if $tildea$ respects the same ordering as $a$, then $D(a)=D(tildea)$ and $E(a)=E(tildea)$.



Is this correct? Can you think of other sufficient conditions? Can I get some sufficient and necessary conditions?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 2 at 12:45
























asked Aug 2 at 12:28









TEX

1419




1419






This question has an open bounty worth +100
reputation from TEX ending ending at 2018-08-11 19:00:44Z">in 4 days.


The question is widely applicable to a large audience. A detailed canonical answer is required to address all the concerns.








This question has an open bounty worth +100
reputation from TEX ending ending at 2018-08-11 19:00:44Z">in 4 days.


The question is widely applicable to a large audience. A detailed canonical answer is required to address all the concerns.













  • If $V_1,V_2,V_3$ have cardinality 7, then $V$ doesn't.
    – Gerry Myerson
    Aug 2 at 12:41










  • Yes, sorry, my mistake
    – TEX
    Aug 2 at 12:45
















  • If $V_1,V_2,V_3$ have cardinality 7, then $V$ doesn't.
    – Gerry Myerson
    Aug 2 at 12:41










  • Yes, sorry, my mistake
    – TEX
    Aug 2 at 12:45















If $V_1,V_2,V_3$ have cardinality 7, then $V$ doesn't.
– Gerry Myerson
Aug 2 at 12:41




If $V_1,V_2,V_3$ have cardinality 7, then $V$ doesn't.
– Gerry Myerson
Aug 2 at 12:41












Yes, sorry, my mistake
– TEX
Aug 2 at 12:45




Yes, sorry, my mistake
– TEX
Aug 2 at 12:45















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870023%2fcomparing-elements-of-sets%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870023%2fcomparing-elements-of-sets%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?