Boolean algebra/ring: Compute product of sum of combinations of variables
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let's say I have a set of variables $a_1, ... ,a_n in 0, 1$ and a boolean algebra where multiplication is $land$ and sum is $oplus$ (exclusive or). This is like in bit operations in computers.
Let's define $c_n(k)$ as the sum of the products of all the $n choose k$ $k$-combinations of the $n$ variables. For example:
$$c_3(1) = a_1 oplus a_2 oplus a_3$$
$$c_3(2) = a_1a_2 oplus a_1a_3 oplus a_2a_3 = a_1 land a_2 oplus a_1 land a_3 oplus a_2 land a_3$$
I would like to be able to get a general formula for all $c_n(k)c_n(j)$ products. For example I can compute:
$$c_3(2)c_3(1) = c_3(3)$$
$$c_4(1)c_4(4) = 0$$
and obviously:
$$c_n(k)c_n(k) = c_n(k)$$
The formula could be restricted to some $n$ values only, but arbitrarily large, for example only to $n$ even or odd, or only e.g. $n = 2^m$, or $n = 2^2m$, or something else, if it is simpler.
Where to start? Should I use induction? Is there already some work done on this?
Thank you for any idea!
After making a calculator program I was able to compute also the following:
$smallc_3(1)c_3(3) = c_3(3)$,
$smallc_3(2)c_3(3) = c_3(3)$
$smallc_4(1)c_4(2) = c_4(3)$,
$smallc_4(1)c_4(3) = c_4(3)$,
$smallc_4(1)c_4(4) = 0$,
$smallc_4(2)c_4(3) = c_4(3)$,
$smallc_4(2)c_4(4) = 0$,
$smallc_4(3)c_4(4) = 0$
$smallc_5(1)c_5(2) = c_5(3)$,
$smallc_5(1)c_5(3) = c_5(3)$,
$smallc_5(1)c_5(4) = c_5(5)$,
$smallc_5(1)c_5(5) = c_5(5)$,
$smallc_5(2)c_5(3) = c_5(3)$,
$smallc_5(2)c_5(4) = 0$,
$smallc_5(2)c_5(5) = 0$,
$smallc_5(3)c_5(4) = 0$,
$smallc_5(3)c_5(5) = 0$,
$smallc_5(4)c_5(5) = c_5(5)$
$smallc_6(1)c_6(2) = c_6(3)$,
$smallc_6(1)c_6(3) = c_6(3) $,
$smallc_6(1)c_6(4) = c_6(5)$,
$smallc_6(1)c_6(5) = c_6(5)$,
$smallc_6(1)c_6(6) = 0$,
$smallc_6(2)c_6(3) = c_6(3)$,
$smallc_6(2)c_6(4) = c_6(6)$,
$smallc_6(2)c_6(5) = 0$,
$smallc_6(2)c_6(6) = c_6(6)$,
$smallc_6(3)c_6(4) = 0$,
$smallc_6(3)c_6(5) = 0$,
$smallc_6(3)c_6(6) = 0$,
$smallc_6(4)c_6(5) = c_6(5)$,
$smallc_6(4)c_6(6) = c_6(6)$,
$smallc_6(5)c_6(6) = 0$
$smallc_7(1)c_7(2) = c_7(3)$,
$smallc_7(1)c_7(3) = c_7(3)$,
$smallc_7(1)c_7(4) = c_7(5)$,
$smallc_7(1)c_7(5) = c_7(5)$,
$smallc_7(1)c_7(6) = c_7(7)$,
$smallc_7(1)c_7(7) = c_7(7)$,
$smallc_7(2)c_7(3) = c_7(3)$,
$smallc_7(2)c_7(4) = c_7(6)$,
$smallc_7(2)c_7(5) = c_7(7)$,
$smallc_7(2)c_7(6) = c_7(6)$,
$smallc_7(2)c_7(7) = c_7(7)$,
$smallc_7(3)c_7(4) = c_7(7)$,
$smallc_7(3)c_7(5) = c_7(7)$,
$smallc_7(3)c_7(6) = c_7(7)$,
$smallc_7(3)c_7(7) = c_7(7)$,
$smallc_7(4)c_7(5) = c_7(5)$,
$smallc_7(4)c_7(6) = c_7(6)$,
$smallc_7(4)c_7(7) = c_7(7)$,
$smallc_7(5)c_7(6) = c_7(7)$,
$smallc_7(5)c_7(7) = c_7(7)$,
$smallc_7(6)c_7(7) = c_7(7)$
$smallc_8(1)c_8(2) = c_8(3)$,
$smallc_8(1)c_8(3) = c_8(3)$,
$smallc_8(1)c_8(4) = c_8(5)$,
$smallc_8(1)c_8(5) = c_8(5)$,
$smallc_8(1)c_8(6) = c_8(7)$,
$smallc_8(1)c_8(7) = c_8(7)$,
$smallc_8(1)c_8(8) = 0$,
$smallc_8(2)c_8(3) = c_8(3)$,
$smallc_8(2)c_8(4) = c_8(6)$,
$smallc_8(2)c_8(5) = c_8(7)$,
$smallc_8(2)c_8(6) = c_8(6)$,
$smallc_8(2)c_8(7) = c_8(7)$,
$smallc_8(2)c_8(8) = 0$,
$smallc_8(3)c_8(4) = c_8(7)$,
$smallc_8(3)c_8(5) = c_8(7)$,
$smallc_8(3)c_8(6) = c_8(7)$,
$smallc_8(3)c_8(7) = c_8(7)$,
$smallc_8(3)c_8(8) = 0$,
$smallc_8(4)c_8(5) = c_8(5)$,
$smallc_8(4)c_8(6) = c_8(6)$,
$smallc_8(4)c_8(7) = c_8(7)$,
$smallc_8(4)c_8(8) = 0$,
$smallc_8(5)c_8(6) = c_8(7)$,
$smallc_8(5)c_8(7) = c_8(7)$,
$smallc_8(5)c_8(8) = 0$,
$smallc_8(6)c_8(7) = c_8(7)$,
$smallc_8(6)c_8(8) = 0$,
$smallc_8(7)c_8(8) = 0$
Based on these experimental results I suspect that the formula might be something like this:
$$c_n(k)c_n(j) =
begincases
c_n(k lor j), & textif $k < n$ and $j < n$ \[2ex]
0, & textif $k = n$ and $n choose j$ is even or $j = n$ and $n choose k$ is even \[2ex]
c_n(n), & textif $k = n$ and $n choose j$ is odd or $j = n$ and $n choose k$ is odd
endcases$$
where $k lor j$ is the number obtained as the bitwise OR of the binary representations of $k$ and $j$.
boolean-algebra boolean-ring
add a comment |Â
up vote
1
down vote
favorite
Let's say I have a set of variables $a_1, ... ,a_n in 0, 1$ and a boolean algebra where multiplication is $land$ and sum is $oplus$ (exclusive or). This is like in bit operations in computers.
Let's define $c_n(k)$ as the sum of the products of all the $n choose k$ $k$-combinations of the $n$ variables. For example:
$$c_3(1) = a_1 oplus a_2 oplus a_3$$
$$c_3(2) = a_1a_2 oplus a_1a_3 oplus a_2a_3 = a_1 land a_2 oplus a_1 land a_3 oplus a_2 land a_3$$
I would like to be able to get a general formula for all $c_n(k)c_n(j)$ products. For example I can compute:
$$c_3(2)c_3(1) = c_3(3)$$
$$c_4(1)c_4(4) = 0$$
and obviously:
$$c_n(k)c_n(k) = c_n(k)$$
The formula could be restricted to some $n$ values only, but arbitrarily large, for example only to $n$ even or odd, or only e.g. $n = 2^m$, or $n = 2^2m$, or something else, if it is simpler.
Where to start? Should I use induction? Is there already some work done on this?
Thank you for any idea!
After making a calculator program I was able to compute also the following:
$smallc_3(1)c_3(3) = c_3(3)$,
$smallc_3(2)c_3(3) = c_3(3)$
$smallc_4(1)c_4(2) = c_4(3)$,
$smallc_4(1)c_4(3) = c_4(3)$,
$smallc_4(1)c_4(4) = 0$,
$smallc_4(2)c_4(3) = c_4(3)$,
$smallc_4(2)c_4(4) = 0$,
$smallc_4(3)c_4(4) = 0$
$smallc_5(1)c_5(2) = c_5(3)$,
$smallc_5(1)c_5(3) = c_5(3)$,
$smallc_5(1)c_5(4) = c_5(5)$,
$smallc_5(1)c_5(5) = c_5(5)$,
$smallc_5(2)c_5(3) = c_5(3)$,
$smallc_5(2)c_5(4) = 0$,
$smallc_5(2)c_5(5) = 0$,
$smallc_5(3)c_5(4) = 0$,
$smallc_5(3)c_5(5) = 0$,
$smallc_5(4)c_5(5) = c_5(5)$
$smallc_6(1)c_6(2) = c_6(3)$,
$smallc_6(1)c_6(3) = c_6(3) $,
$smallc_6(1)c_6(4) = c_6(5)$,
$smallc_6(1)c_6(5) = c_6(5)$,
$smallc_6(1)c_6(6) = 0$,
$smallc_6(2)c_6(3) = c_6(3)$,
$smallc_6(2)c_6(4) = c_6(6)$,
$smallc_6(2)c_6(5) = 0$,
$smallc_6(2)c_6(6) = c_6(6)$,
$smallc_6(3)c_6(4) = 0$,
$smallc_6(3)c_6(5) = 0$,
$smallc_6(3)c_6(6) = 0$,
$smallc_6(4)c_6(5) = c_6(5)$,
$smallc_6(4)c_6(6) = c_6(6)$,
$smallc_6(5)c_6(6) = 0$
$smallc_7(1)c_7(2) = c_7(3)$,
$smallc_7(1)c_7(3) = c_7(3)$,
$smallc_7(1)c_7(4) = c_7(5)$,
$smallc_7(1)c_7(5) = c_7(5)$,
$smallc_7(1)c_7(6) = c_7(7)$,
$smallc_7(1)c_7(7) = c_7(7)$,
$smallc_7(2)c_7(3) = c_7(3)$,
$smallc_7(2)c_7(4) = c_7(6)$,
$smallc_7(2)c_7(5) = c_7(7)$,
$smallc_7(2)c_7(6) = c_7(6)$,
$smallc_7(2)c_7(7) = c_7(7)$,
$smallc_7(3)c_7(4) = c_7(7)$,
$smallc_7(3)c_7(5) = c_7(7)$,
$smallc_7(3)c_7(6) = c_7(7)$,
$smallc_7(3)c_7(7) = c_7(7)$,
$smallc_7(4)c_7(5) = c_7(5)$,
$smallc_7(4)c_7(6) = c_7(6)$,
$smallc_7(4)c_7(7) = c_7(7)$,
$smallc_7(5)c_7(6) = c_7(7)$,
$smallc_7(5)c_7(7) = c_7(7)$,
$smallc_7(6)c_7(7) = c_7(7)$
$smallc_8(1)c_8(2) = c_8(3)$,
$smallc_8(1)c_8(3) = c_8(3)$,
$smallc_8(1)c_8(4) = c_8(5)$,
$smallc_8(1)c_8(5) = c_8(5)$,
$smallc_8(1)c_8(6) = c_8(7)$,
$smallc_8(1)c_8(7) = c_8(7)$,
$smallc_8(1)c_8(8) = 0$,
$smallc_8(2)c_8(3) = c_8(3)$,
$smallc_8(2)c_8(4) = c_8(6)$,
$smallc_8(2)c_8(5) = c_8(7)$,
$smallc_8(2)c_8(6) = c_8(6)$,
$smallc_8(2)c_8(7) = c_8(7)$,
$smallc_8(2)c_8(8) = 0$,
$smallc_8(3)c_8(4) = c_8(7)$,
$smallc_8(3)c_8(5) = c_8(7)$,
$smallc_8(3)c_8(6) = c_8(7)$,
$smallc_8(3)c_8(7) = c_8(7)$,
$smallc_8(3)c_8(8) = 0$,
$smallc_8(4)c_8(5) = c_8(5)$,
$smallc_8(4)c_8(6) = c_8(6)$,
$smallc_8(4)c_8(7) = c_8(7)$,
$smallc_8(4)c_8(8) = 0$,
$smallc_8(5)c_8(6) = c_8(7)$,
$smallc_8(5)c_8(7) = c_8(7)$,
$smallc_8(5)c_8(8) = 0$,
$smallc_8(6)c_8(7) = c_8(7)$,
$smallc_8(6)c_8(8) = 0$,
$smallc_8(7)c_8(8) = 0$
Based on these experimental results I suspect that the formula might be something like this:
$$c_n(k)c_n(j) =
begincases
c_n(k lor j), & textif $k < n$ and $j < n$ \[2ex]
0, & textif $k = n$ and $n choose j$ is even or $j = n$ and $n choose k$ is even \[2ex]
c_n(n), & textif $k = n$ and $n choose j$ is odd or $j = n$ and $n choose k$ is odd
endcases$$
where $k lor j$ is the number obtained as the bitwise OR of the binary representations of $k$ and $j$.
boolean-algebra boolean-ring
Your second product identity can be generalized to $c_n(k)c_n(n)=0$ if $binomnk$ is even.
– Richard
Jul 23 at 9:38
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let's say I have a set of variables $a_1, ... ,a_n in 0, 1$ and a boolean algebra where multiplication is $land$ and sum is $oplus$ (exclusive or). This is like in bit operations in computers.
Let's define $c_n(k)$ as the sum of the products of all the $n choose k$ $k$-combinations of the $n$ variables. For example:
$$c_3(1) = a_1 oplus a_2 oplus a_3$$
$$c_3(2) = a_1a_2 oplus a_1a_3 oplus a_2a_3 = a_1 land a_2 oplus a_1 land a_3 oplus a_2 land a_3$$
I would like to be able to get a general formula for all $c_n(k)c_n(j)$ products. For example I can compute:
$$c_3(2)c_3(1) = c_3(3)$$
$$c_4(1)c_4(4) = 0$$
and obviously:
$$c_n(k)c_n(k) = c_n(k)$$
The formula could be restricted to some $n$ values only, but arbitrarily large, for example only to $n$ even or odd, or only e.g. $n = 2^m$, or $n = 2^2m$, or something else, if it is simpler.
Where to start? Should I use induction? Is there already some work done on this?
Thank you for any idea!
After making a calculator program I was able to compute also the following:
$smallc_3(1)c_3(3) = c_3(3)$,
$smallc_3(2)c_3(3) = c_3(3)$
$smallc_4(1)c_4(2) = c_4(3)$,
$smallc_4(1)c_4(3) = c_4(3)$,
$smallc_4(1)c_4(4) = 0$,
$smallc_4(2)c_4(3) = c_4(3)$,
$smallc_4(2)c_4(4) = 0$,
$smallc_4(3)c_4(4) = 0$
$smallc_5(1)c_5(2) = c_5(3)$,
$smallc_5(1)c_5(3) = c_5(3)$,
$smallc_5(1)c_5(4) = c_5(5)$,
$smallc_5(1)c_5(5) = c_5(5)$,
$smallc_5(2)c_5(3) = c_5(3)$,
$smallc_5(2)c_5(4) = 0$,
$smallc_5(2)c_5(5) = 0$,
$smallc_5(3)c_5(4) = 0$,
$smallc_5(3)c_5(5) = 0$,
$smallc_5(4)c_5(5) = c_5(5)$
$smallc_6(1)c_6(2) = c_6(3)$,
$smallc_6(1)c_6(3) = c_6(3) $,
$smallc_6(1)c_6(4) = c_6(5)$,
$smallc_6(1)c_6(5) = c_6(5)$,
$smallc_6(1)c_6(6) = 0$,
$smallc_6(2)c_6(3) = c_6(3)$,
$smallc_6(2)c_6(4) = c_6(6)$,
$smallc_6(2)c_6(5) = 0$,
$smallc_6(2)c_6(6) = c_6(6)$,
$smallc_6(3)c_6(4) = 0$,
$smallc_6(3)c_6(5) = 0$,
$smallc_6(3)c_6(6) = 0$,
$smallc_6(4)c_6(5) = c_6(5)$,
$smallc_6(4)c_6(6) = c_6(6)$,
$smallc_6(5)c_6(6) = 0$
$smallc_7(1)c_7(2) = c_7(3)$,
$smallc_7(1)c_7(3) = c_7(3)$,
$smallc_7(1)c_7(4) = c_7(5)$,
$smallc_7(1)c_7(5) = c_7(5)$,
$smallc_7(1)c_7(6) = c_7(7)$,
$smallc_7(1)c_7(7) = c_7(7)$,
$smallc_7(2)c_7(3) = c_7(3)$,
$smallc_7(2)c_7(4) = c_7(6)$,
$smallc_7(2)c_7(5) = c_7(7)$,
$smallc_7(2)c_7(6) = c_7(6)$,
$smallc_7(2)c_7(7) = c_7(7)$,
$smallc_7(3)c_7(4) = c_7(7)$,
$smallc_7(3)c_7(5) = c_7(7)$,
$smallc_7(3)c_7(6) = c_7(7)$,
$smallc_7(3)c_7(7) = c_7(7)$,
$smallc_7(4)c_7(5) = c_7(5)$,
$smallc_7(4)c_7(6) = c_7(6)$,
$smallc_7(4)c_7(7) = c_7(7)$,
$smallc_7(5)c_7(6) = c_7(7)$,
$smallc_7(5)c_7(7) = c_7(7)$,
$smallc_7(6)c_7(7) = c_7(7)$
$smallc_8(1)c_8(2) = c_8(3)$,
$smallc_8(1)c_8(3) = c_8(3)$,
$smallc_8(1)c_8(4) = c_8(5)$,
$smallc_8(1)c_8(5) = c_8(5)$,
$smallc_8(1)c_8(6) = c_8(7)$,
$smallc_8(1)c_8(7) = c_8(7)$,
$smallc_8(1)c_8(8) = 0$,
$smallc_8(2)c_8(3) = c_8(3)$,
$smallc_8(2)c_8(4) = c_8(6)$,
$smallc_8(2)c_8(5) = c_8(7)$,
$smallc_8(2)c_8(6) = c_8(6)$,
$smallc_8(2)c_8(7) = c_8(7)$,
$smallc_8(2)c_8(8) = 0$,
$smallc_8(3)c_8(4) = c_8(7)$,
$smallc_8(3)c_8(5) = c_8(7)$,
$smallc_8(3)c_8(6) = c_8(7)$,
$smallc_8(3)c_8(7) = c_8(7)$,
$smallc_8(3)c_8(8) = 0$,
$smallc_8(4)c_8(5) = c_8(5)$,
$smallc_8(4)c_8(6) = c_8(6)$,
$smallc_8(4)c_8(7) = c_8(7)$,
$smallc_8(4)c_8(8) = 0$,
$smallc_8(5)c_8(6) = c_8(7)$,
$smallc_8(5)c_8(7) = c_8(7)$,
$smallc_8(5)c_8(8) = 0$,
$smallc_8(6)c_8(7) = c_8(7)$,
$smallc_8(6)c_8(8) = 0$,
$smallc_8(7)c_8(8) = 0$
Based on these experimental results I suspect that the formula might be something like this:
$$c_n(k)c_n(j) =
begincases
c_n(k lor j), & textif $k < n$ and $j < n$ \[2ex]
0, & textif $k = n$ and $n choose j$ is even or $j = n$ and $n choose k$ is even \[2ex]
c_n(n), & textif $k = n$ and $n choose j$ is odd or $j = n$ and $n choose k$ is odd
endcases$$
where $k lor j$ is the number obtained as the bitwise OR of the binary representations of $k$ and $j$.
boolean-algebra boolean-ring
Let's say I have a set of variables $a_1, ... ,a_n in 0, 1$ and a boolean algebra where multiplication is $land$ and sum is $oplus$ (exclusive or). This is like in bit operations in computers.
Let's define $c_n(k)$ as the sum of the products of all the $n choose k$ $k$-combinations of the $n$ variables. For example:
$$c_3(1) = a_1 oplus a_2 oplus a_3$$
$$c_3(2) = a_1a_2 oplus a_1a_3 oplus a_2a_3 = a_1 land a_2 oplus a_1 land a_3 oplus a_2 land a_3$$
I would like to be able to get a general formula for all $c_n(k)c_n(j)$ products. For example I can compute:
$$c_3(2)c_3(1) = c_3(3)$$
$$c_4(1)c_4(4) = 0$$
and obviously:
$$c_n(k)c_n(k) = c_n(k)$$
The formula could be restricted to some $n$ values only, but arbitrarily large, for example only to $n$ even or odd, or only e.g. $n = 2^m$, or $n = 2^2m$, or something else, if it is simpler.
Where to start? Should I use induction? Is there already some work done on this?
Thank you for any idea!
After making a calculator program I was able to compute also the following:
$smallc_3(1)c_3(3) = c_3(3)$,
$smallc_3(2)c_3(3) = c_3(3)$
$smallc_4(1)c_4(2) = c_4(3)$,
$smallc_4(1)c_4(3) = c_4(3)$,
$smallc_4(1)c_4(4) = 0$,
$smallc_4(2)c_4(3) = c_4(3)$,
$smallc_4(2)c_4(4) = 0$,
$smallc_4(3)c_4(4) = 0$
$smallc_5(1)c_5(2) = c_5(3)$,
$smallc_5(1)c_5(3) = c_5(3)$,
$smallc_5(1)c_5(4) = c_5(5)$,
$smallc_5(1)c_5(5) = c_5(5)$,
$smallc_5(2)c_5(3) = c_5(3)$,
$smallc_5(2)c_5(4) = 0$,
$smallc_5(2)c_5(5) = 0$,
$smallc_5(3)c_5(4) = 0$,
$smallc_5(3)c_5(5) = 0$,
$smallc_5(4)c_5(5) = c_5(5)$
$smallc_6(1)c_6(2) = c_6(3)$,
$smallc_6(1)c_6(3) = c_6(3) $,
$smallc_6(1)c_6(4) = c_6(5)$,
$smallc_6(1)c_6(5) = c_6(5)$,
$smallc_6(1)c_6(6) = 0$,
$smallc_6(2)c_6(3) = c_6(3)$,
$smallc_6(2)c_6(4) = c_6(6)$,
$smallc_6(2)c_6(5) = 0$,
$smallc_6(2)c_6(6) = c_6(6)$,
$smallc_6(3)c_6(4) = 0$,
$smallc_6(3)c_6(5) = 0$,
$smallc_6(3)c_6(6) = 0$,
$smallc_6(4)c_6(5) = c_6(5)$,
$smallc_6(4)c_6(6) = c_6(6)$,
$smallc_6(5)c_6(6) = 0$
$smallc_7(1)c_7(2) = c_7(3)$,
$smallc_7(1)c_7(3) = c_7(3)$,
$smallc_7(1)c_7(4) = c_7(5)$,
$smallc_7(1)c_7(5) = c_7(5)$,
$smallc_7(1)c_7(6) = c_7(7)$,
$smallc_7(1)c_7(7) = c_7(7)$,
$smallc_7(2)c_7(3) = c_7(3)$,
$smallc_7(2)c_7(4) = c_7(6)$,
$smallc_7(2)c_7(5) = c_7(7)$,
$smallc_7(2)c_7(6) = c_7(6)$,
$smallc_7(2)c_7(7) = c_7(7)$,
$smallc_7(3)c_7(4) = c_7(7)$,
$smallc_7(3)c_7(5) = c_7(7)$,
$smallc_7(3)c_7(6) = c_7(7)$,
$smallc_7(3)c_7(7) = c_7(7)$,
$smallc_7(4)c_7(5) = c_7(5)$,
$smallc_7(4)c_7(6) = c_7(6)$,
$smallc_7(4)c_7(7) = c_7(7)$,
$smallc_7(5)c_7(6) = c_7(7)$,
$smallc_7(5)c_7(7) = c_7(7)$,
$smallc_7(6)c_7(7) = c_7(7)$
$smallc_8(1)c_8(2) = c_8(3)$,
$smallc_8(1)c_8(3) = c_8(3)$,
$smallc_8(1)c_8(4) = c_8(5)$,
$smallc_8(1)c_8(5) = c_8(5)$,
$smallc_8(1)c_8(6) = c_8(7)$,
$smallc_8(1)c_8(7) = c_8(7)$,
$smallc_8(1)c_8(8) = 0$,
$smallc_8(2)c_8(3) = c_8(3)$,
$smallc_8(2)c_8(4) = c_8(6)$,
$smallc_8(2)c_8(5) = c_8(7)$,
$smallc_8(2)c_8(6) = c_8(6)$,
$smallc_8(2)c_8(7) = c_8(7)$,
$smallc_8(2)c_8(8) = 0$,
$smallc_8(3)c_8(4) = c_8(7)$,
$smallc_8(3)c_8(5) = c_8(7)$,
$smallc_8(3)c_8(6) = c_8(7)$,
$smallc_8(3)c_8(7) = c_8(7)$,
$smallc_8(3)c_8(8) = 0$,
$smallc_8(4)c_8(5) = c_8(5)$,
$smallc_8(4)c_8(6) = c_8(6)$,
$smallc_8(4)c_8(7) = c_8(7)$,
$smallc_8(4)c_8(8) = 0$,
$smallc_8(5)c_8(6) = c_8(7)$,
$smallc_8(5)c_8(7) = c_8(7)$,
$smallc_8(5)c_8(8) = 0$,
$smallc_8(6)c_8(7) = c_8(7)$,
$smallc_8(6)c_8(8) = 0$,
$smallc_8(7)c_8(8) = 0$
Based on these experimental results I suspect that the formula might be something like this:
$$c_n(k)c_n(j) =
begincases
c_n(k lor j), & textif $k < n$ and $j < n$ \[2ex]
0, & textif $k = n$ and $n choose j$ is even or $j = n$ and $n choose k$ is even \[2ex]
c_n(n), & textif $k = n$ and $n choose j$ is odd or $j = n$ and $n choose k$ is odd
endcases$$
where $k lor j$ is the number obtained as the bitwise OR of the binary representations of $k$ and $j$.
boolean-algebra boolean-ring
edited Jul 26 at 15:53


Alex Francisco
15.6k92047
15.6k92047
asked Jul 23 at 7:59
mbjoe
205
205
Your second product identity can be generalized to $c_n(k)c_n(n)=0$ if $binomnk$ is even.
– Richard
Jul 23 at 9:38
add a comment |Â
Your second product identity can be generalized to $c_n(k)c_n(n)=0$ if $binomnk$ is even.
– Richard
Jul 23 at 9:38
Your second product identity can be generalized to $c_n(k)c_n(n)=0$ if $binomnk$ is even.
– Richard
Jul 23 at 9:38
Your second product identity can be generalized to $c_n(k)c_n(n)=0$ if $binomnk$ is even.
– Richard
Jul 23 at 9:38
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
accepted
The elementary symmetric polynomials are related to your function by $$e_k(a_1,a_2,dots,a_n)equiv c_n(k)pmod2$$
where multiplication mod $2$ is $wedge$ and addition mod $2$ is $oplus$. For completeness, let $c_n(0):=1$.
Vieta's formula is that a polynomial with roots $a_1,dots,a_n$ with multiplicity is given by $f(x)=sum_i=0^n(-1)^ie_i(a_1,dots,a_n)x^n-i$. If we think of a particular assignment of $0$'s and $1$'s to $a_1,dots,a_n$, then we can also write $f(x)=x^a(x-1)^b$, where $a,b$ are the numbers of $0$'s and $1$'s (with $a+b=n$). Expanded, this is $f(x)=sum_j=0^bbinombjx^a+b-j(-1)^j$. Modulo $2$, we get
$$sum_i=0^ne_i(a_1,dots,a_n)x^n-iequivsum_j=0^bbinombjx^n-jpmod2.$$
Matching up coefficients, $e_k(a_1,dots,a_n)equivbinombkpmod2$. That is, $c_n(k)equivbinombkpmod2$ when $b$ is the number of variables set to $1$. (By the way, construct Pascal's triangle modulo $2$ if you haven't already. Do it out far enough until you recognize the shape.)
Lucas's theorem can be used to understand these binomial coefficients. Write $b=sum_i=0^m b_i2^i$ and $k=sum_i=0^m k_i2^i$, with $b_0,dots,b_m,k_0,dots,k_min0,1$. That is, as base-2 representations. Then $binombkequivprod_i=0^mbinomb_ik_ipmod2$, where recall $binom01=0$. Logically, with $p,qin0,1$, $binompq$ is $qto p$ ($q$ implies $p$) since if $q=0$ the coefficient is $1$, and if $q=1$, then the coefficient is $p$.
Let $j$ be another number and let $j_0,dots,j_m$ be similar. Then,
$$c_n(k)c_n(j)equivbinombkbinombjequiv prod_i=0^mbinomb_ik_ibinomb_ij_i$$
Recall that $(k_ito b_i)wedge(j_ito b_i)$ is logically $(k_ivee j_i)to b_i$, so we have
$$c_n(k)c_n(j)equivprod_i=0^mbinomb_ik_ivee j_iequivbinombkvee j$$
using your bitwise-OR notation.
This holds for all $b$. Thus, if $kvee jleq n$, $c_n(k)c_n(j)=c_n(kvee j)$. Otherwise, if $kvee j > n$, $c_n(k)c_n(j)=0$.
If you define $c_n(m)=0$ when $m>n$, then it is just
$$c_n(k)c_n(j)=c_n(kvee j).$$
There might be other interesting identities one can get from Newton's identities, but I couldn't find any. They involve $p_k(a_1,dots,a_n)=a_1^k+dots+a_n^k$, which is just $e_1(a_1,dots,a_n)$ when mod $2$ and $kgeq 1$. So, the identity
$$ke_k(a_1,dots,a_n)=sum_i=1^k(-1)^i-1e_k-i(a_1,dots,a_n)p_i(a_1,dots,a_n)$$
when reduced mod $2$ is
$$ke_k(a_1,dots,a_n)equivsum_i=1^ke_k-i(a_1,dots,a_n)e_1(a_1,dots,a_n)pmod2$$
or
$$kc_n(k)equiv c_n(1)sum_j=0^k-1c_n(j)pmod2.$$
For example, if $k=3$, we get $c_n(3)=c_n(1)(1+c_n(1)+c_n(2))$.
But, distributing the right hand side we get $c_n(1)+c_n(1)+c_n(1)c_n(2)=c_n(3)$, which is nothing new.
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
add a comment |Â
up vote
0
down vote
$defpeqmathrelphantom=$Step 1: Preliminary analysis.
Note that in this system, $a + a = 0$ and $a^2 = a$ for any $a$. For any $1 leqslant k, l leqslant n$, suppose$$
c_n(k) c_n(l) = sum_m = 1^min(k + l, n) b_m c_n(m),
$$
where $b_1, cdots, b_min(k + l, n) in 0, 1$. Note that for any $A, B subseteq 1, cdots, n$, there is$$
left( prod_i in A a_i right)left( prod_j in B a_j right) = prod_i in A cup B a_i,
$$
and $|A| = k, |B| = l Rightarrow |A cup B| geqslant max(k, l)$, thus $b_m = 0$ for $1 leqslant m < max(k, l)$. For $max(k, l) leqslant m leqslant min(n, k + l)$, in order to determine $b_m$, it suffices to find the number of set pairs $(A, B)$ that satisfy the following requirements:
- $A, B subseteq 1, cdots, n$,
- $|A| = k$, $|B| = l$, $A cup B = 1, cdots, m$.
First, there are $C(m, k)$ ways to select $A$. After fixing $A$, note that $1, cdots, m setminus A subseteq B$, thus there are $C(k, l - (m - k))$ ways to select $B$. Therefore,$$
b_m equiv C(m, k) C(k, l - (m - k)) equiv fracm!(m - k)!, (m - l)!, (k + l - m)! pmod2.
$$
Step 2: For any $k, l geqslant 1$, there exists a unique $m = f(k, l)$ such that $max(k, l) leqslant m leqslant k + l$ and $dfracm!(m - k)!, (m - l)!, (k + l - m)!$ is odd.
Proof: Two lemmas first.
Lemma 1: For any $a, b, c ge 0$,$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1,
$$
where $x = x - [x]$ is the fractional part of $x$.
Proof: Note that for any $n geqslant 0$, Legendre's formula
$$
ν_2(n) = sum_j = 1^∞ left[ fracn2^j right]
$$
gives the exponent of the largest power of $2$ that divides $n!$. Since $a!, b!, c! mid (a + b + c)!$, then$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right).
$$
Becausebeginalign*
&peq sum_j = 1^∞ left( left[ fraca + b + c2^j right] - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right)\
&= sum_j = 1^∞ left[ fraca + b + c2^j - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right]\
&= sum_j = 1^∞ left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right],
endalign*
thenbeginalign*
&mathrelphantomlongleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right)\
&Longleftrightarrow forall j geqslant 1: left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right] = 0\
&Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1.
endalign*
Lemma 2: For any $m, n in mathbbN_+$, there exists $a in mathbbN$ such that $left dfracmn right = dfracan$. (Proof omitted.)
Now back to step 2. It will be proved by induction on $r geqslant 0$ that the proposition holds for $1 leqslant k, l leqslant 2^r$.
For $r = 0$, if $k = l = 1$, then $1 leqslant m leqslant 2$ and the only $m$ that satisfies the requirements is $m = 1$. Now assume that the proposition holds for $1 leqslant k, l leqslant 2^r$. For $1 leqslant k, l leqslant 2^r + 1$, there are three cases.
Case 1: Both $k$ and $l$ are even. Suppose $k = 2k_0$ and $l = 2l_0$, then $k_0, l_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0$, then$$
left frac2m_0 - 2k_02 right + left frac2m_0 - 2l_02 right + left frac2k_0 + 2l_0 - 2m_02 right = 0 < 1.
$$
For $j geqslant 2$, by lemma 1 and induction hypothesis,beginalign*
&peq left frac2m_0 - 2k_02^j right + left frac2m_0 - 2l_02^j right + left frac2k_0 + 2l_0 - 2m_02^j right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1.
endalign*
Thus by lemma 1, $m = 2m_0$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is odd, then$$
left fracm - 2k_02 right + left fracm - 2l_02 right + left frac2k_0 + 2l_0 - m2 right = frac32 > 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$. For any $j geqslant 1$, by lemma 1,beginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 - 2k_02^j + 1 right + left frac2m_1 - 2l_02^j + 1 right + left frac2k_0 + 2l_0 - 2m_12^j + 1 right < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 2: One of $k$ and $l$ is odd and the other is even. Without loss of generality, suppose $k = 2k_0 + 1$ and $l = 2l_0$, then $l_0 geqslant 1$. If $k_0 = 0$, then $2l_0 leqslant m leqslant 2l_0 + 1$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now assume that $k_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0 + 1$, then$$
left frac2m_0 + 1 - 2k_0 - 12 right + left frac2m_0 + 1 - 2l_02 right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12 right = frac12 < 1.
$$
For $j geqslant 2$, note that$$
2m_0 + 1 - 2l_0 notequiv 0 pmod2^j Longrightarrow left frac2m_0 + 1 - 2l_02^j right geqslant frac12^j,
$$
thusbeginalign*
&peq left frac2m_0 + 1 - 2k_0 - 12^j right + left frac2m_0 + 1 - 2l_02^j right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12^j right\
&= left fracm_0 - k_02^j - 1 right + left frac2m_0 - 2l_02^j right + frac12^j + left frack_0 + l_0 - m_02^j - 1 right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right + frac12^j.
endalign*
By lemma 1 and induction hypothesis,$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1,
$$
and lemma 2 implies$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right leqslant 1 - frac12^j - 1,
$$
then$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right+ left frack_0 + l_0 - m_02^j - 1 right + frac12^j leqslant 1 - frac12^j - 1 + frac12^j < 1.
$$
Thus by lemma 1, $m = 2m_0 + 1$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is even, then$$
left fracm - 2k_0 - 12 right + left fracm - 2l_02 right + left frac2k_0 + 1 + 2l_0 - m2 right = 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1 + 1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$ (note that $2m_1 + 1 geqslant 2l_0 Rightarrow m_1 geqslant l_0$). For any $j geqslant 1$, by lemma 1,$$
left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right < 1.
$$
Note that$$
2m_1 + 1 - 2l_0 notequiv 0 pmod2^j + 1 Longrightarrow left frac2m_1 + 1 - 2l_02^j + 1 right geqslant frac12^j + 1,
$$
thusbeginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 - frac12^j + 1 right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 right - frac12^j + 1 + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right - frac12^j + 1\
&< 1 - frac12^j + 1 < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 3: Both $k$ and $l$ are odd. Suppose $k = 2k_0 + 1$, $l = 2l_0 + 1$. If at least one of $k_0$ and $l_0$ is $0$, without loss of generality, assume that $k_0 = 0$, then $2l_0 + 1 leqslant m leqslant 2l_0 + 2$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now suppose $k_0, l_0 geqslant 1$ and take $m_0 = f(k_0, l_0)$. By deduction analogous to case 2, $m = 2m_0 + 1$ is the only $m$ that satisfies the requirements.
Therefore, the proposition holds for $1 leqslant k, l leqslant 2^r + 1$. End of induction.
Step 3: For any $k, l geqslant 1$, there is $f(k, l) = k lor l$, where $lor$ represents bitwise OR (e.g. $5 lor 13 = (0101)_2 lor (1101)_2 = (1101)_2 = 13$), and for any $n geqslant 1$,$$
c_n(k) c_n(l) = begincases
c_n(k lor l); & k lor l leqslant n\
0; & k lor l > n
endcases.
$$
Proof: From the proof of step 2, $f$ satisfies the following recurrence relations for $k, l geqslant 2$:$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases,
$$
and $f(k, 1) = f(1, k) = 2 left[ dfrack2 right] + 1$ for $k geqslant 1$. If further define $f(k, 0) = f(0, k) = k$ for $k geqslant 0$, then$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases
$$
hold for $k, l geqslant 1$. Now it is easy to prove by induction on $k geqslant 0$ that $f(k, l) = k lor l (forall l geqslant 0)$.
Finally, for any $n geqslant 1$ and $1 leqslant k, l leqslant n$, if $k lor l leqslant n$, then step 1 and step 2 imply $b_k lor l = 1$, $b_m = 0 (m ≠k lor l)$ and $c_n(k) c_n(l) = c_n(k lor l)$. Otherwise, step 1 and step 2 imply $b_m = 0$ for all $m$ and $c_n(k) c_n(l) = 0$.
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
The elementary symmetric polynomials are related to your function by $$e_k(a_1,a_2,dots,a_n)equiv c_n(k)pmod2$$
where multiplication mod $2$ is $wedge$ and addition mod $2$ is $oplus$. For completeness, let $c_n(0):=1$.
Vieta's formula is that a polynomial with roots $a_1,dots,a_n$ with multiplicity is given by $f(x)=sum_i=0^n(-1)^ie_i(a_1,dots,a_n)x^n-i$. If we think of a particular assignment of $0$'s and $1$'s to $a_1,dots,a_n$, then we can also write $f(x)=x^a(x-1)^b$, where $a,b$ are the numbers of $0$'s and $1$'s (with $a+b=n$). Expanded, this is $f(x)=sum_j=0^bbinombjx^a+b-j(-1)^j$. Modulo $2$, we get
$$sum_i=0^ne_i(a_1,dots,a_n)x^n-iequivsum_j=0^bbinombjx^n-jpmod2.$$
Matching up coefficients, $e_k(a_1,dots,a_n)equivbinombkpmod2$. That is, $c_n(k)equivbinombkpmod2$ when $b$ is the number of variables set to $1$. (By the way, construct Pascal's triangle modulo $2$ if you haven't already. Do it out far enough until you recognize the shape.)
Lucas's theorem can be used to understand these binomial coefficients. Write $b=sum_i=0^m b_i2^i$ and $k=sum_i=0^m k_i2^i$, with $b_0,dots,b_m,k_0,dots,k_min0,1$. That is, as base-2 representations. Then $binombkequivprod_i=0^mbinomb_ik_ipmod2$, where recall $binom01=0$. Logically, with $p,qin0,1$, $binompq$ is $qto p$ ($q$ implies $p$) since if $q=0$ the coefficient is $1$, and if $q=1$, then the coefficient is $p$.
Let $j$ be another number and let $j_0,dots,j_m$ be similar. Then,
$$c_n(k)c_n(j)equivbinombkbinombjequiv prod_i=0^mbinomb_ik_ibinomb_ij_i$$
Recall that $(k_ito b_i)wedge(j_ito b_i)$ is logically $(k_ivee j_i)to b_i$, so we have
$$c_n(k)c_n(j)equivprod_i=0^mbinomb_ik_ivee j_iequivbinombkvee j$$
using your bitwise-OR notation.
This holds for all $b$. Thus, if $kvee jleq n$, $c_n(k)c_n(j)=c_n(kvee j)$. Otherwise, if $kvee j > n$, $c_n(k)c_n(j)=0$.
If you define $c_n(m)=0$ when $m>n$, then it is just
$$c_n(k)c_n(j)=c_n(kvee j).$$
There might be other interesting identities one can get from Newton's identities, but I couldn't find any. They involve $p_k(a_1,dots,a_n)=a_1^k+dots+a_n^k$, which is just $e_1(a_1,dots,a_n)$ when mod $2$ and $kgeq 1$. So, the identity
$$ke_k(a_1,dots,a_n)=sum_i=1^k(-1)^i-1e_k-i(a_1,dots,a_n)p_i(a_1,dots,a_n)$$
when reduced mod $2$ is
$$ke_k(a_1,dots,a_n)equivsum_i=1^ke_k-i(a_1,dots,a_n)e_1(a_1,dots,a_n)pmod2$$
or
$$kc_n(k)equiv c_n(1)sum_j=0^k-1c_n(j)pmod2.$$
For example, if $k=3$, we get $c_n(3)=c_n(1)(1+c_n(1)+c_n(2))$.
But, distributing the right hand side we get $c_n(1)+c_n(1)+c_n(1)c_n(2)=c_n(3)$, which is nothing new.
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
add a comment |Â
up vote
0
down vote
accepted
The elementary symmetric polynomials are related to your function by $$e_k(a_1,a_2,dots,a_n)equiv c_n(k)pmod2$$
where multiplication mod $2$ is $wedge$ and addition mod $2$ is $oplus$. For completeness, let $c_n(0):=1$.
Vieta's formula is that a polynomial with roots $a_1,dots,a_n$ with multiplicity is given by $f(x)=sum_i=0^n(-1)^ie_i(a_1,dots,a_n)x^n-i$. If we think of a particular assignment of $0$'s and $1$'s to $a_1,dots,a_n$, then we can also write $f(x)=x^a(x-1)^b$, where $a,b$ are the numbers of $0$'s and $1$'s (with $a+b=n$). Expanded, this is $f(x)=sum_j=0^bbinombjx^a+b-j(-1)^j$. Modulo $2$, we get
$$sum_i=0^ne_i(a_1,dots,a_n)x^n-iequivsum_j=0^bbinombjx^n-jpmod2.$$
Matching up coefficients, $e_k(a_1,dots,a_n)equivbinombkpmod2$. That is, $c_n(k)equivbinombkpmod2$ when $b$ is the number of variables set to $1$. (By the way, construct Pascal's triangle modulo $2$ if you haven't already. Do it out far enough until you recognize the shape.)
Lucas's theorem can be used to understand these binomial coefficients. Write $b=sum_i=0^m b_i2^i$ and $k=sum_i=0^m k_i2^i$, with $b_0,dots,b_m,k_0,dots,k_min0,1$. That is, as base-2 representations. Then $binombkequivprod_i=0^mbinomb_ik_ipmod2$, where recall $binom01=0$. Logically, with $p,qin0,1$, $binompq$ is $qto p$ ($q$ implies $p$) since if $q=0$ the coefficient is $1$, and if $q=1$, then the coefficient is $p$.
Let $j$ be another number and let $j_0,dots,j_m$ be similar. Then,
$$c_n(k)c_n(j)equivbinombkbinombjequiv prod_i=0^mbinomb_ik_ibinomb_ij_i$$
Recall that $(k_ito b_i)wedge(j_ito b_i)$ is logically $(k_ivee j_i)to b_i$, so we have
$$c_n(k)c_n(j)equivprod_i=0^mbinomb_ik_ivee j_iequivbinombkvee j$$
using your bitwise-OR notation.
This holds for all $b$. Thus, if $kvee jleq n$, $c_n(k)c_n(j)=c_n(kvee j)$. Otherwise, if $kvee j > n$, $c_n(k)c_n(j)=0$.
If you define $c_n(m)=0$ when $m>n$, then it is just
$$c_n(k)c_n(j)=c_n(kvee j).$$
There might be other interesting identities one can get from Newton's identities, but I couldn't find any. They involve $p_k(a_1,dots,a_n)=a_1^k+dots+a_n^k$, which is just $e_1(a_1,dots,a_n)$ when mod $2$ and $kgeq 1$. So, the identity
$$ke_k(a_1,dots,a_n)=sum_i=1^k(-1)^i-1e_k-i(a_1,dots,a_n)p_i(a_1,dots,a_n)$$
when reduced mod $2$ is
$$ke_k(a_1,dots,a_n)equivsum_i=1^ke_k-i(a_1,dots,a_n)e_1(a_1,dots,a_n)pmod2$$
or
$$kc_n(k)equiv c_n(1)sum_j=0^k-1c_n(j)pmod2.$$
For example, if $k=3$, we get $c_n(3)=c_n(1)(1+c_n(1)+c_n(2))$.
But, distributing the right hand side we get $c_n(1)+c_n(1)+c_n(1)c_n(2)=c_n(3)$, which is nothing new.
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
The elementary symmetric polynomials are related to your function by $$e_k(a_1,a_2,dots,a_n)equiv c_n(k)pmod2$$
where multiplication mod $2$ is $wedge$ and addition mod $2$ is $oplus$. For completeness, let $c_n(0):=1$.
Vieta's formula is that a polynomial with roots $a_1,dots,a_n$ with multiplicity is given by $f(x)=sum_i=0^n(-1)^ie_i(a_1,dots,a_n)x^n-i$. If we think of a particular assignment of $0$'s and $1$'s to $a_1,dots,a_n$, then we can also write $f(x)=x^a(x-1)^b$, where $a,b$ are the numbers of $0$'s and $1$'s (with $a+b=n$). Expanded, this is $f(x)=sum_j=0^bbinombjx^a+b-j(-1)^j$. Modulo $2$, we get
$$sum_i=0^ne_i(a_1,dots,a_n)x^n-iequivsum_j=0^bbinombjx^n-jpmod2.$$
Matching up coefficients, $e_k(a_1,dots,a_n)equivbinombkpmod2$. That is, $c_n(k)equivbinombkpmod2$ when $b$ is the number of variables set to $1$. (By the way, construct Pascal's triangle modulo $2$ if you haven't already. Do it out far enough until you recognize the shape.)
Lucas's theorem can be used to understand these binomial coefficients. Write $b=sum_i=0^m b_i2^i$ and $k=sum_i=0^m k_i2^i$, with $b_0,dots,b_m,k_0,dots,k_min0,1$. That is, as base-2 representations. Then $binombkequivprod_i=0^mbinomb_ik_ipmod2$, where recall $binom01=0$. Logically, with $p,qin0,1$, $binompq$ is $qto p$ ($q$ implies $p$) since if $q=0$ the coefficient is $1$, and if $q=1$, then the coefficient is $p$.
Let $j$ be another number and let $j_0,dots,j_m$ be similar. Then,
$$c_n(k)c_n(j)equivbinombkbinombjequiv prod_i=0^mbinomb_ik_ibinomb_ij_i$$
Recall that $(k_ito b_i)wedge(j_ito b_i)$ is logically $(k_ivee j_i)to b_i$, so we have
$$c_n(k)c_n(j)equivprod_i=0^mbinomb_ik_ivee j_iequivbinombkvee j$$
using your bitwise-OR notation.
This holds for all $b$. Thus, if $kvee jleq n$, $c_n(k)c_n(j)=c_n(kvee j)$. Otherwise, if $kvee j > n$, $c_n(k)c_n(j)=0$.
If you define $c_n(m)=0$ when $m>n$, then it is just
$$c_n(k)c_n(j)=c_n(kvee j).$$
There might be other interesting identities one can get from Newton's identities, but I couldn't find any. They involve $p_k(a_1,dots,a_n)=a_1^k+dots+a_n^k$, which is just $e_1(a_1,dots,a_n)$ when mod $2$ and $kgeq 1$. So, the identity
$$ke_k(a_1,dots,a_n)=sum_i=1^k(-1)^i-1e_k-i(a_1,dots,a_n)p_i(a_1,dots,a_n)$$
when reduced mod $2$ is
$$ke_k(a_1,dots,a_n)equivsum_i=1^ke_k-i(a_1,dots,a_n)e_1(a_1,dots,a_n)pmod2$$
or
$$kc_n(k)equiv c_n(1)sum_j=0^k-1c_n(j)pmod2.$$
For example, if $k=3$, we get $c_n(3)=c_n(1)(1+c_n(1)+c_n(2))$.
But, distributing the right hand side we get $c_n(1)+c_n(1)+c_n(1)c_n(2)=c_n(3)$, which is nothing new.
The elementary symmetric polynomials are related to your function by $$e_k(a_1,a_2,dots,a_n)equiv c_n(k)pmod2$$
where multiplication mod $2$ is $wedge$ and addition mod $2$ is $oplus$. For completeness, let $c_n(0):=1$.
Vieta's formula is that a polynomial with roots $a_1,dots,a_n$ with multiplicity is given by $f(x)=sum_i=0^n(-1)^ie_i(a_1,dots,a_n)x^n-i$. If we think of a particular assignment of $0$'s and $1$'s to $a_1,dots,a_n$, then we can also write $f(x)=x^a(x-1)^b$, where $a,b$ are the numbers of $0$'s and $1$'s (with $a+b=n$). Expanded, this is $f(x)=sum_j=0^bbinombjx^a+b-j(-1)^j$. Modulo $2$, we get
$$sum_i=0^ne_i(a_1,dots,a_n)x^n-iequivsum_j=0^bbinombjx^n-jpmod2.$$
Matching up coefficients, $e_k(a_1,dots,a_n)equivbinombkpmod2$. That is, $c_n(k)equivbinombkpmod2$ when $b$ is the number of variables set to $1$. (By the way, construct Pascal's triangle modulo $2$ if you haven't already. Do it out far enough until you recognize the shape.)
Lucas's theorem can be used to understand these binomial coefficients. Write $b=sum_i=0^m b_i2^i$ and $k=sum_i=0^m k_i2^i$, with $b_0,dots,b_m,k_0,dots,k_min0,1$. That is, as base-2 representations. Then $binombkequivprod_i=0^mbinomb_ik_ipmod2$, where recall $binom01=0$. Logically, with $p,qin0,1$, $binompq$ is $qto p$ ($q$ implies $p$) since if $q=0$ the coefficient is $1$, and if $q=1$, then the coefficient is $p$.
Let $j$ be another number and let $j_0,dots,j_m$ be similar. Then,
$$c_n(k)c_n(j)equivbinombkbinombjequiv prod_i=0^mbinomb_ik_ibinomb_ij_i$$
Recall that $(k_ito b_i)wedge(j_ito b_i)$ is logically $(k_ivee j_i)to b_i$, so we have
$$c_n(k)c_n(j)equivprod_i=0^mbinomb_ik_ivee j_iequivbinombkvee j$$
using your bitwise-OR notation.
This holds for all $b$. Thus, if $kvee jleq n$, $c_n(k)c_n(j)=c_n(kvee j)$. Otherwise, if $kvee j > n$, $c_n(k)c_n(j)=0$.
If you define $c_n(m)=0$ when $m>n$, then it is just
$$c_n(k)c_n(j)=c_n(kvee j).$$
There might be other interesting identities one can get from Newton's identities, but I couldn't find any. They involve $p_k(a_1,dots,a_n)=a_1^k+dots+a_n^k$, which is just $e_1(a_1,dots,a_n)$ when mod $2$ and $kgeq 1$. So, the identity
$$ke_k(a_1,dots,a_n)=sum_i=1^k(-1)^i-1e_k-i(a_1,dots,a_n)p_i(a_1,dots,a_n)$$
when reduced mod $2$ is
$$ke_k(a_1,dots,a_n)equivsum_i=1^ke_k-i(a_1,dots,a_n)e_1(a_1,dots,a_n)pmod2$$
or
$$kc_n(k)equiv c_n(1)sum_j=0^k-1c_n(j)pmod2.$$
For example, if $k=3$, we get $c_n(3)=c_n(1)(1+c_n(1)+c_n(2))$.
But, distributing the right hand side we get $c_n(1)+c_n(1)+c_n(1)c_n(2)=c_n(3)$, which is nothing new.
edited Jul 26 at 18:16
answered Jul 26 at 8:44
Kyle Miller
7,034725
7,034725
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
add a comment |Â
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
Thank you! I could never have done it myself. By the way every natural number $m le n = 2^p$ can be expressed as: $$m = sum_i=1^pc_n(2^i)2^i$$ provided that $a_1=ldots=a_m=1$ and $a_m+1=ldots=a_n=0$. That expression could be used to compute a certain $f(m)$ (for example the Collatz function) over an entire interval $1 le m le n$.
– mbjoe
Jul 28 at 7:00
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
I guess that's because $c_n(2^i)=binomm2^ipmod2$ (with your assignment of $1$'s and $0$'s), which according to Lucas's theorem is the $i$th bit of $m$. I'm not seeing how it applies to the Collatz function, but it could be interesting if it does.
– Kyle Miller
Jul 28 at 17:38
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
Because for $m=sum_i=0^pm_i2^i$ the Collatz function is: $f(m)=sum_i=1^pm_i2^i-1+sum_i=1^pm_0m_i2^i+m_02$ so it is possible to compute binary coefficients at each step as some $sum_ic_n(k_i)$. Probably not of much use though, since a numeric verification is much faster.
– mbjoe
Aug 6 at 7:13
add a comment |Â
up vote
0
down vote
$defpeqmathrelphantom=$Step 1: Preliminary analysis.
Note that in this system, $a + a = 0$ and $a^2 = a$ for any $a$. For any $1 leqslant k, l leqslant n$, suppose$$
c_n(k) c_n(l) = sum_m = 1^min(k + l, n) b_m c_n(m),
$$
where $b_1, cdots, b_min(k + l, n) in 0, 1$. Note that for any $A, B subseteq 1, cdots, n$, there is$$
left( prod_i in A a_i right)left( prod_j in B a_j right) = prod_i in A cup B a_i,
$$
and $|A| = k, |B| = l Rightarrow |A cup B| geqslant max(k, l)$, thus $b_m = 0$ for $1 leqslant m < max(k, l)$. For $max(k, l) leqslant m leqslant min(n, k + l)$, in order to determine $b_m$, it suffices to find the number of set pairs $(A, B)$ that satisfy the following requirements:
- $A, B subseteq 1, cdots, n$,
- $|A| = k$, $|B| = l$, $A cup B = 1, cdots, m$.
First, there are $C(m, k)$ ways to select $A$. After fixing $A$, note that $1, cdots, m setminus A subseteq B$, thus there are $C(k, l - (m - k))$ ways to select $B$. Therefore,$$
b_m equiv C(m, k) C(k, l - (m - k)) equiv fracm!(m - k)!, (m - l)!, (k + l - m)! pmod2.
$$
Step 2: For any $k, l geqslant 1$, there exists a unique $m = f(k, l)$ such that $max(k, l) leqslant m leqslant k + l$ and $dfracm!(m - k)!, (m - l)!, (k + l - m)!$ is odd.
Proof: Two lemmas first.
Lemma 1: For any $a, b, c ge 0$,$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1,
$$
where $x = x - [x]$ is the fractional part of $x$.
Proof: Note that for any $n geqslant 0$, Legendre's formula
$$
ν_2(n) = sum_j = 1^∞ left[ fracn2^j right]
$$
gives the exponent of the largest power of $2$ that divides $n!$. Since $a!, b!, c! mid (a + b + c)!$, then$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right).
$$
Becausebeginalign*
&peq sum_j = 1^∞ left( left[ fraca + b + c2^j right] - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right)\
&= sum_j = 1^∞ left[ fraca + b + c2^j - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right]\
&= sum_j = 1^∞ left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right],
endalign*
thenbeginalign*
&mathrelphantomlongleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right)\
&Longleftrightarrow forall j geqslant 1: left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right] = 0\
&Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1.
endalign*
Lemma 2: For any $m, n in mathbbN_+$, there exists $a in mathbbN$ such that $left dfracmn right = dfracan$. (Proof omitted.)
Now back to step 2. It will be proved by induction on $r geqslant 0$ that the proposition holds for $1 leqslant k, l leqslant 2^r$.
For $r = 0$, if $k = l = 1$, then $1 leqslant m leqslant 2$ and the only $m$ that satisfies the requirements is $m = 1$. Now assume that the proposition holds for $1 leqslant k, l leqslant 2^r$. For $1 leqslant k, l leqslant 2^r + 1$, there are three cases.
Case 1: Both $k$ and $l$ are even. Suppose $k = 2k_0$ and $l = 2l_0$, then $k_0, l_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0$, then$$
left frac2m_0 - 2k_02 right + left frac2m_0 - 2l_02 right + left frac2k_0 + 2l_0 - 2m_02 right = 0 < 1.
$$
For $j geqslant 2$, by lemma 1 and induction hypothesis,beginalign*
&peq left frac2m_0 - 2k_02^j right + left frac2m_0 - 2l_02^j right + left frac2k_0 + 2l_0 - 2m_02^j right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1.
endalign*
Thus by lemma 1, $m = 2m_0$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is odd, then$$
left fracm - 2k_02 right + left fracm - 2l_02 right + left frac2k_0 + 2l_0 - m2 right = frac32 > 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$. For any $j geqslant 1$, by lemma 1,beginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 - 2k_02^j + 1 right + left frac2m_1 - 2l_02^j + 1 right + left frac2k_0 + 2l_0 - 2m_12^j + 1 right < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 2: One of $k$ and $l$ is odd and the other is even. Without loss of generality, suppose $k = 2k_0 + 1$ and $l = 2l_0$, then $l_0 geqslant 1$. If $k_0 = 0$, then $2l_0 leqslant m leqslant 2l_0 + 1$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now assume that $k_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0 + 1$, then$$
left frac2m_0 + 1 - 2k_0 - 12 right + left frac2m_0 + 1 - 2l_02 right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12 right = frac12 < 1.
$$
For $j geqslant 2$, note that$$
2m_0 + 1 - 2l_0 notequiv 0 pmod2^j Longrightarrow left frac2m_0 + 1 - 2l_02^j right geqslant frac12^j,
$$
thusbeginalign*
&peq left frac2m_0 + 1 - 2k_0 - 12^j right + left frac2m_0 + 1 - 2l_02^j right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12^j right\
&= left fracm_0 - k_02^j - 1 right + left frac2m_0 - 2l_02^j right + frac12^j + left frack_0 + l_0 - m_02^j - 1 right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right + frac12^j.
endalign*
By lemma 1 and induction hypothesis,$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1,
$$
and lemma 2 implies$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right leqslant 1 - frac12^j - 1,
$$
then$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right+ left frack_0 + l_0 - m_02^j - 1 right + frac12^j leqslant 1 - frac12^j - 1 + frac12^j < 1.
$$
Thus by lemma 1, $m = 2m_0 + 1$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is even, then$$
left fracm - 2k_0 - 12 right + left fracm - 2l_02 right + left frac2k_0 + 1 + 2l_0 - m2 right = 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1 + 1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$ (note that $2m_1 + 1 geqslant 2l_0 Rightarrow m_1 geqslant l_0$). For any $j geqslant 1$, by lemma 1,$$
left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right < 1.
$$
Note that$$
2m_1 + 1 - 2l_0 notequiv 0 pmod2^j + 1 Longrightarrow left frac2m_1 + 1 - 2l_02^j + 1 right geqslant frac12^j + 1,
$$
thusbeginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 - frac12^j + 1 right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 right - frac12^j + 1 + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right - frac12^j + 1\
&< 1 - frac12^j + 1 < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 3: Both $k$ and $l$ are odd. Suppose $k = 2k_0 + 1$, $l = 2l_0 + 1$. If at least one of $k_0$ and $l_0$ is $0$, without loss of generality, assume that $k_0 = 0$, then $2l_0 + 1 leqslant m leqslant 2l_0 + 2$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now suppose $k_0, l_0 geqslant 1$ and take $m_0 = f(k_0, l_0)$. By deduction analogous to case 2, $m = 2m_0 + 1$ is the only $m$ that satisfies the requirements.
Therefore, the proposition holds for $1 leqslant k, l leqslant 2^r + 1$. End of induction.
Step 3: For any $k, l geqslant 1$, there is $f(k, l) = k lor l$, where $lor$ represents bitwise OR (e.g. $5 lor 13 = (0101)_2 lor (1101)_2 = (1101)_2 = 13$), and for any $n geqslant 1$,$$
c_n(k) c_n(l) = begincases
c_n(k lor l); & k lor l leqslant n\
0; & k lor l > n
endcases.
$$
Proof: From the proof of step 2, $f$ satisfies the following recurrence relations for $k, l geqslant 2$:$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases,
$$
and $f(k, 1) = f(1, k) = 2 left[ dfrack2 right] + 1$ for $k geqslant 1$. If further define $f(k, 0) = f(0, k) = k$ for $k geqslant 0$, then$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases
$$
hold for $k, l geqslant 1$. Now it is easy to prove by induction on $k geqslant 0$ that $f(k, l) = k lor l (forall l geqslant 0)$.
Finally, for any $n geqslant 1$ and $1 leqslant k, l leqslant n$, if $k lor l leqslant n$, then step 1 and step 2 imply $b_k lor l = 1$, $b_m = 0 (m ≠k lor l)$ and $c_n(k) c_n(l) = c_n(k lor l)$. Otherwise, step 1 and step 2 imply $b_m = 0$ for all $m$ and $c_n(k) c_n(l) = 0$.
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
add a comment |Â
up vote
0
down vote
$defpeqmathrelphantom=$Step 1: Preliminary analysis.
Note that in this system, $a + a = 0$ and $a^2 = a$ for any $a$. For any $1 leqslant k, l leqslant n$, suppose$$
c_n(k) c_n(l) = sum_m = 1^min(k + l, n) b_m c_n(m),
$$
where $b_1, cdots, b_min(k + l, n) in 0, 1$. Note that for any $A, B subseteq 1, cdots, n$, there is$$
left( prod_i in A a_i right)left( prod_j in B a_j right) = prod_i in A cup B a_i,
$$
and $|A| = k, |B| = l Rightarrow |A cup B| geqslant max(k, l)$, thus $b_m = 0$ for $1 leqslant m < max(k, l)$. For $max(k, l) leqslant m leqslant min(n, k + l)$, in order to determine $b_m$, it suffices to find the number of set pairs $(A, B)$ that satisfy the following requirements:
- $A, B subseteq 1, cdots, n$,
- $|A| = k$, $|B| = l$, $A cup B = 1, cdots, m$.
First, there are $C(m, k)$ ways to select $A$. After fixing $A$, note that $1, cdots, m setminus A subseteq B$, thus there are $C(k, l - (m - k))$ ways to select $B$. Therefore,$$
b_m equiv C(m, k) C(k, l - (m - k)) equiv fracm!(m - k)!, (m - l)!, (k + l - m)! pmod2.
$$
Step 2: For any $k, l geqslant 1$, there exists a unique $m = f(k, l)$ such that $max(k, l) leqslant m leqslant k + l$ and $dfracm!(m - k)!, (m - l)!, (k + l - m)!$ is odd.
Proof: Two lemmas first.
Lemma 1: For any $a, b, c ge 0$,$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1,
$$
where $x = x - [x]$ is the fractional part of $x$.
Proof: Note that for any $n geqslant 0$, Legendre's formula
$$
ν_2(n) = sum_j = 1^∞ left[ fracn2^j right]
$$
gives the exponent of the largest power of $2$ that divides $n!$. Since $a!, b!, c! mid (a + b + c)!$, then$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right).
$$
Becausebeginalign*
&peq sum_j = 1^∞ left( left[ fraca + b + c2^j right] - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right)\
&= sum_j = 1^∞ left[ fraca + b + c2^j - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right]\
&= sum_j = 1^∞ left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right],
endalign*
thenbeginalign*
&mathrelphantomlongleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right)\
&Longleftrightarrow forall j geqslant 1: left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right] = 0\
&Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1.
endalign*
Lemma 2: For any $m, n in mathbbN_+$, there exists $a in mathbbN$ such that $left dfracmn right = dfracan$. (Proof omitted.)
Now back to step 2. It will be proved by induction on $r geqslant 0$ that the proposition holds for $1 leqslant k, l leqslant 2^r$.
For $r = 0$, if $k = l = 1$, then $1 leqslant m leqslant 2$ and the only $m$ that satisfies the requirements is $m = 1$. Now assume that the proposition holds for $1 leqslant k, l leqslant 2^r$. For $1 leqslant k, l leqslant 2^r + 1$, there are three cases.
Case 1: Both $k$ and $l$ are even. Suppose $k = 2k_0$ and $l = 2l_0$, then $k_0, l_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0$, then$$
left frac2m_0 - 2k_02 right + left frac2m_0 - 2l_02 right + left frac2k_0 + 2l_0 - 2m_02 right = 0 < 1.
$$
For $j geqslant 2$, by lemma 1 and induction hypothesis,beginalign*
&peq left frac2m_0 - 2k_02^j right + left frac2m_0 - 2l_02^j right + left frac2k_0 + 2l_0 - 2m_02^j right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1.
endalign*
Thus by lemma 1, $m = 2m_0$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is odd, then$$
left fracm - 2k_02 right + left fracm - 2l_02 right + left frac2k_0 + 2l_0 - m2 right = frac32 > 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$. For any $j geqslant 1$, by lemma 1,beginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 - 2k_02^j + 1 right + left frac2m_1 - 2l_02^j + 1 right + left frac2k_0 + 2l_0 - 2m_12^j + 1 right < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 2: One of $k$ and $l$ is odd and the other is even. Without loss of generality, suppose $k = 2k_0 + 1$ and $l = 2l_0$, then $l_0 geqslant 1$. If $k_0 = 0$, then $2l_0 leqslant m leqslant 2l_0 + 1$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now assume that $k_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0 + 1$, then$$
left frac2m_0 + 1 - 2k_0 - 12 right + left frac2m_0 + 1 - 2l_02 right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12 right = frac12 < 1.
$$
For $j geqslant 2$, note that$$
2m_0 + 1 - 2l_0 notequiv 0 pmod2^j Longrightarrow left frac2m_0 + 1 - 2l_02^j right geqslant frac12^j,
$$
thusbeginalign*
&peq left frac2m_0 + 1 - 2k_0 - 12^j right + left frac2m_0 + 1 - 2l_02^j right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12^j right\
&= left fracm_0 - k_02^j - 1 right + left frac2m_0 - 2l_02^j right + frac12^j + left frack_0 + l_0 - m_02^j - 1 right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right + frac12^j.
endalign*
By lemma 1 and induction hypothesis,$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1,
$$
and lemma 2 implies$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right leqslant 1 - frac12^j - 1,
$$
then$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right+ left frack_0 + l_0 - m_02^j - 1 right + frac12^j leqslant 1 - frac12^j - 1 + frac12^j < 1.
$$
Thus by lemma 1, $m = 2m_0 + 1$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is even, then$$
left fracm - 2k_0 - 12 right + left fracm - 2l_02 right + left frac2k_0 + 1 + 2l_0 - m2 right = 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1 + 1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$ (note that $2m_1 + 1 geqslant 2l_0 Rightarrow m_1 geqslant l_0$). For any $j geqslant 1$, by lemma 1,$$
left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right < 1.
$$
Note that$$
2m_1 + 1 - 2l_0 notequiv 0 pmod2^j + 1 Longrightarrow left frac2m_1 + 1 - 2l_02^j + 1 right geqslant frac12^j + 1,
$$
thusbeginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 - frac12^j + 1 right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 right - frac12^j + 1 + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right - frac12^j + 1\
&< 1 - frac12^j + 1 < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 3: Both $k$ and $l$ are odd. Suppose $k = 2k_0 + 1$, $l = 2l_0 + 1$. If at least one of $k_0$ and $l_0$ is $0$, without loss of generality, assume that $k_0 = 0$, then $2l_0 + 1 leqslant m leqslant 2l_0 + 2$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now suppose $k_0, l_0 geqslant 1$ and take $m_0 = f(k_0, l_0)$. By deduction analogous to case 2, $m = 2m_0 + 1$ is the only $m$ that satisfies the requirements.
Therefore, the proposition holds for $1 leqslant k, l leqslant 2^r + 1$. End of induction.
Step 3: For any $k, l geqslant 1$, there is $f(k, l) = k lor l$, where $lor$ represents bitwise OR (e.g. $5 lor 13 = (0101)_2 lor (1101)_2 = (1101)_2 = 13$), and for any $n geqslant 1$,$$
c_n(k) c_n(l) = begincases
c_n(k lor l); & k lor l leqslant n\
0; & k lor l > n
endcases.
$$
Proof: From the proof of step 2, $f$ satisfies the following recurrence relations for $k, l geqslant 2$:$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases,
$$
and $f(k, 1) = f(1, k) = 2 left[ dfrack2 right] + 1$ for $k geqslant 1$. If further define $f(k, 0) = f(0, k) = k$ for $k geqslant 0$, then$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases
$$
hold for $k, l geqslant 1$. Now it is easy to prove by induction on $k geqslant 0$ that $f(k, l) = k lor l (forall l geqslant 0)$.
Finally, for any $n geqslant 1$ and $1 leqslant k, l leqslant n$, if $k lor l leqslant n$, then step 1 and step 2 imply $b_k lor l = 1$, $b_m = 0 (m ≠k lor l)$ and $c_n(k) c_n(l) = c_n(k lor l)$. Otherwise, step 1 and step 2 imply $b_m = 0$ for all $m$ and $c_n(k) c_n(l) = 0$.
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$defpeqmathrelphantom=$Step 1: Preliminary analysis.
Note that in this system, $a + a = 0$ and $a^2 = a$ for any $a$. For any $1 leqslant k, l leqslant n$, suppose$$
c_n(k) c_n(l) = sum_m = 1^min(k + l, n) b_m c_n(m),
$$
where $b_1, cdots, b_min(k + l, n) in 0, 1$. Note that for any $A, B subseteq 1, cdots, n$, there is$$
left( prod_i in A a_i right)left( prod_j in B a_j right) = prod_i in A cup B a_i,
$$
and $|A| = k, |B| = l Rightarrow |A cup B| geqslant max(k, l)$, thus $b_m = 0$ for $1 leqslant m < max(k, l)$. For $max(k, l) leqslant m leqslant min(n, k + l)$, in order to determine $b_m$, it suffices to find the number of set pairs $(A, B)$ that satisfy the following requirements:
- $A, B subseteq 1, cdots, n$,
- $|A| = k$, $|B| = l$, $A cup B = 1, cdots, m$.
First, there are $C(m, k)$ ways to select $A$. After fixing $A$, note that $1, cdots, m setminus A subseteq B$, thus there are $C(k, l - (m - k))$ ways to select $B$. Therefore,$$
b_m equiv C(m, k) C(k, l - (m - k)) equiv fracm!(m - k)!, (m - l)!, (k + l - m)! pmod2.
$$
Step 2: For any $k, l geqslant 1$, there exists a unique $m = f(k, l)$ such that $max(k, l) leqslant m leqslant k + l$ and $dfracm!(m - k)!, (m - l)!, (k + l - m)!$ is odd.
Proof: Two lemmas first.
Lemma 1: For any $a, b, c ge 0$,$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1,
$$
where $x = x - [x]$ is the fractional part of $x$.
Proof: Note that for any $n geqslant 0$, Legendre's formula
$$
ν_2(n) = sum_j = 1^∞ left[ fracn2^j right]
$$
gives the exponent of the largest power of $2$ that divides $n!$. Since $a!, b!, c! mid (a + b + c)!$, then$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right).
$$
Becausebeginalign*
&peq sum_j = 1^∞ left( left[ fraca + b + c2^j right] - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right)\
&= sum_j = 1^∞ left[ fraca + b + c2^j - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right]\
&= sum_j = 1^∞ left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right],
endalign*
thenbeginalign*
&mathrelphantomlongleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right)\
&Longleftrightarrow forall j geqslant 1: left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right] = 0\
&Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1.
endalign*
Lemma 2: For any $m, n in mathbbN_+$, there exists $a in mathbbN$ such that $left dfracmn right = dfracan$. (Proof omitted.)
Now back to step 2. It will be proved by induction on $r geqslant 0$ that the proposition holds for $1 leqslant k, l leqslant 2^r$.
For $r = 0$, if $k = l = 1$, then $1 leqslant m leqslant 2$ and the only $m$ that satisfies the requirements is $m = 1$. Now assume that the proposition holds for $1 leqslant k, l leqslant 2^r$. For $1 leqslant k, l leqslant 2^r + 1$, there are three cases.
Case 1: Both $k$ and $l$ are even. Suppose $k = 2k_0$ and $l = 2l_0$, then $k_0, l_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0$, then$$
left frac2m_0 - 2k_02 right + left frac2m_0 - 2l_02 right + left frac2k_0 + 2l_0 - 2m_02 right = 0 < 1.
$$
For $j geqslant 2$, by lemma 1 and induction hypothesis,beginalign*
&peq left frac2m_0 - 2k_02^j right + left frac2m_0 - 2l_02^j right + left frac2k_0 + 2l_0 - 2m_02^j right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1.
endalign*
Thus by lemma 1, $m = 2m_0$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is odd, then$$
left fracm - 2k_02 right + left fracm - 2l_02 right + left frac2k_0 + 2l_0 - m2 right = frac32 > 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$. For any $j geqslant 1$, by lemma 1,beginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 - 2k_02^j + 1 right + left frac2m_1 - 2l_02^j + 1 right + left frac2k_0 + 2l_0 - 2m_12^j + 1 right < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 2: One of $k$ and $l$ is odd and the other is even. Without loss of generality, suppose $k = 2k_0 + 1$ and $l = 2l_0$, then $l_0 geqslant 1$. If $k_0 = 0$, then $2l_0 leqslant m leqslant 2l_0 + 1$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now assume that $k_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0 + 1$, then$$
left frac2m_0 + 1 - 2k_0 - 12 right + left frac2m_0 + 1 - 2l_02 right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12 right = frac12 < 1.
$$
For $j geqslant 2$, note that$$
2m_0 + 1 - 2l_0 notequiv 0 pmod2^j Longrightarrow left frac2m_0 + 1 - 2l_02^j right geqslant frac12^j,
$$
thusbeginalign*
&peq left frac2m_0 + 1 - 2k_0 - 12^j right + left frac2m_0 + 1 - 2l_02^j right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12^j right\
&= left fracm_0 - k_02^j - 1 right + left frac2m_0 - 2l_02^j right + frac12^j + left frack_0 + l_0 - m_02^j - 1 right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right + frac12^j.
endalign*
By lemma 1 and induction hypothesis,$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1,
$$
and lemma 2 implies$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right leqslant 1 - frac12^j - 1,
$$
then$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right+ left frack_0 + l_0 - m_02^j - 1 right + frac12^j leqslant 1 - frac12^j - 1 + frac12^j < 1.
$$
Thus by lemma 1, $m = 2m_0 + 1$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is even, then$$
left fracm - 2k_0 - 12 right + left fracm - 2l_02 right + left frac2k_0 + 1 + 2l_0 - m2 right = 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1 + 1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$ (note that $2m_1 + 1 geqslant 2l_0 Rightarrow m_1 geqslant l_0$). For any $j geqslant 1$, by lemma 1,$$
left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right < 1.
$$
Note that$$
2m_1 + 1 - 2l_0 notequiv 0 pmod2^j + 1 Longrightarrow left frac2m_1 + 1 - 2l_02^j + 1 right geqslant frac12^j + 1,
$$
thusbeginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 - frac12^j + 1 right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 right - frac12^j + 1 + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right - frac12^j + 1\
&< 1 - frac12^j + 1 < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 3: Both $k$ and $l$ are odd. Suppose $k = 2k_0 + 1$, $l = 2l_0 + 1$. If at least one of $k_0$ and $l_0$ is $0$, without loss of generality, assume that $k_0 = 0$, then $2l_0 + 1 leqslant m leqslant 2l_0 + 2$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now suppose $k_0, l_0 geqslant 1$ and take $m_0 = f(k_0, l_0)$. By deduction analogous to case 2, $m = 2m_0 + 1$ is the only $m$ that satisfies the requirements.
Therefore, the proposition holds for $1 leqslant k, l leqslant 2^r + 1$. End of induction.
Step 3: For any $k, l geqslant 1$, there is $f(k, l) = k lor l$, where $lor$ represents bitwise OR (e.g. $5 lor 13 = (0101)_2 lor (1101)_2 = (1101)_2 = 13$), and for any $n geqslant 1$,$$
c_n(k) c_n(l) = begincases
c_n(k lor l); & k lor l leqslant n\
0; & k lor l > n
endcases.
$$
Proof: From the proof of step 2, $f$ satisfies the following recurrence relations for $k, l geqslant 2$:$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases,
$$
and $f(k, 1) = f(1, k) = 2 left[ dfrack2 right] + 1$ for $k geqslant 1$. If further define $f(k, 0) = f(0, k) = k$ for $k geqslant 0$, then$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases
$$
hold for $k, l geqslant 1$. Now it is easy to prove by induction on $k geqslant 0$ that $f(k, l) = k lor l (forall l geqslant 0)$.
Finally, for any $n geqslant 1$ and $1 leqslant k, l leqslant n$, if $k lor l leqslant n$, then step 1 and step 2 imply $b_k lor l = 1$, $b_m = 0 (m ≠k lor l)$ and $c_n(k) c_n(l) = c_n(k lor l)$. Otherwise, step 1 and step 2 imply $b_m = 0$ for all $m$ and $c_n(k) c_n(l) = 0$.
$defpeqmathrelphantom=$Step 1: Preliminary analysis.
Note that in this system, $a + a = 0$ and $a^2 = a$ for any $a$. For any $1 leqslant k, l leqslant n$, suppose$$
c_n(k) c_n(l) = sum_m = 1^min(k + l, n) b_m c_n(m),
$$
where $b_1, cdots, b_min(k + l, n) in 0, 1$. Note that for any $A, B subseteq 1, cdots, n$, there is$$
left( prod_i in A a_i right)left( prod_j in B a_j right) = prod_i in A cup B a_i,
$$
and $|A| = k, |B| = l Rightarrow |A cup B| geqslant max(k, l)$, thus $b_m = 0$ for $1 leqslant m < max(k, l)$. For $max(k, l) leqslant m leqslant min(n, k + l)$, in order to determine $b_m$, it suffices to find the number of set pairs $(A, B)$ that satisfy the following requirements:
- $A, B subseteq 1, cdots, n$,
- $|A| = k$, $|B| = l$, $A cup B = 1, cdots, m$.
First, there are $C(m, k)$ ways to select $A$. After fixing $A$, note that $1, cdots, m setminus A subseteq B$, thus there are $C(k, l - (m - k))$ ways to select $B$. Therefore,$$
b_m equiv C(m, k) C(k, l - (m - k)) equiv fracm!(m - k)!, (m - l)!, (k + l - m)! pmod2.
$$
Step 2: For any $k, l geqslant 1$, there exists a unique $m = f(k, l)$ such that $max(k, l) leqslant m leqslant k + l$ and $dfracm!(m - k)!, (m - l)!, (k + l - m)!$ is odd.
Proof: Two lemmas first.
Lemma 1: For any $a, b, c ge 0$,$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1,
$$
where $x = x - [x]$ is the fractional part of $x$.
Proof: Note that for any $n geqslant 0$, Legendre's formula
$$
ν_2(n) = sum_j = 1^∞ left[ fracn2^j right]
$$
gives the exponent of the largest power of $2$ that divides $n!$. Since $a!, b!, c! mid (a + b + c)!$, then$$
frac(a + b + c)!a!, b!, c! text is odd Longleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right).
$$
Becausebeginalign*
&peq sum_j = 1^∞ left( left[ fraca + b + c2^j right] - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right)\
&= sum_j = 1^∞ left[ fraca + b + c2^j - left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right) right]\
&= sum_j = 1^∞ left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right],
endalign*
thenbeginalign*
&mathrelphantomlongleftrightarrow sum_j = 1^∞ left[ fraca + b + c2^j right] = sum_j = 1^∞ left( left[ fraca2^j right] + left[ fracb2^j right] + left[ fracc2^j right] right)\
&Longleftrightarrow forall j geqslant 1: left[ left fraca2^j right + left fracb2^j right + left fracc2^j right right] = 0\
&Longleftrightarrow forall j geqslant 1: left fraca2^j right + left fracb2^j right + left fracc2^j right < 1.
endalign*
Lemma 2: For any $m, n in mathbbN_+$, there exists $a in mathbbN$ such that $left dfracmn right = dfracan$. (Proof omitted.)
Now back to step 2. It will be proved by induction on $r geqslant 0$ that the proposition holds for $1 leqslant k, l leqslant 2^r$.
For $r = 0$, if $k = l = 1$, then $1 leqslant m leqslant 2$ and the only $m$ that satisfies the requirements is $m = 1$. Now assume that the proposition holds for $1 leqslant k, l leqslant 2^r$. For $1 leqslant k, l leqslant 2^r + 1$, there are three cases.
Case 1: Both $k$ and $l$ are even. Suppose $k = 2k_0$ and $l = 2l_0$, then $k_0, l_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0$, then$$
left frac2m_0 - 2k_02 right + left frac2m_0 - 2l_02 right + left frac2k_0 + 2l_0 - 2m_02 right = 0 < 1.
$$
For $j geqslant 2$, by lemma 1 and induction hypothesis,beginalign*
&peq left frac2m_0 - 2k_02^j right + left frac2m_0 - 2l_02^j right + left frac2k_0 + 2l_0 - 2m_02^j right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1.
endalign*
Thus by lemma 1, $m = 2m_0$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is odd, then$$
left fracm - 2k_02 right + left fracm - 2l_02 right + left frac2k_0 + 2l_0 - m2 right = frac32 > 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$. For any $j geqslant 1$, by lemma 1,beginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 - 2k_02^j + 1 right + left frac2m_1 - 2l_02^j + 1 right + left frac2k_0 + 2l_0 - 2m_12^j + 1 right < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 2: One of $k$ and $l$ is odd and the other is even. Without loss of generality, suppose $k = 2k_0 + 1$ and $l = 2l_0$, then $l_0 geqslant 1$. If $k_0 = 0$, then $2l_0 leqslant m leqslant 2l_0 + 1$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now assume that $k_0 geqslant 1$. On the one hand, suppose $m_0 = f(k_0, l_0)$ and $m = 2m_0 + 1$, then$$
left frac2m_0 + 1 - 2k_0 - 12 right + left frac2m_0 + 1 - 2l_02 right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12 right = frac12 < 1.
$$
For $j geqslant 2$, note that$$
2m_0 + 1 - 2l_0 notequiv 0 pmod2^j Longrightarrow left frac2m_0 + 1 - 2l_02^j right geqslant frac12^j,
$$
thusbeginalign*
&peq left frac2m_0 + 1 - 2k_0 - 12^j right + left frac2m_0 + 1 - 2l_02^j right + left frac2k_0 + 1 + 2l_0 - 2m_0 - 12^j right\
&= left fracm_0 - k_02^j - 1 right + left frac2m_0 - 2l_02^j right + frac12^j + left frack_0 + l_0 - m_02^j - 1 right\
&= left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right + frac12^j.
endalign*
By lemma 1 and induction hypothesis,$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right < 1,
$$
and lemma 2 implies$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right + left frack_0 + l_0 - m_02^j - 1 right leqslant 1 - frac12^j - 1,
$$
then$$
left fracm_0 - k_02^j - 1 right + left fracm_0 - l_02^j - 1 right+ left frack_0 + l_0 - m_02^j - 1 right + frac12^j leqslant 1 - frac12^j - 1 + frac12^j < 1.
$$
Thus by lemma 1, $m = 2m_0 + 1$ satisfies the requirements. On the other hand, for any $m$ that satisfies the requirements, if $m$ is even, then$$
left fracm - 2k_0 - 12 right + left fracm - 2l_02 right + left frac2k_0 + 1 + 2l_0 - m2 right = 1,
$$
a contradiction by lemma 1. Suppose $m = 2m_1 + 1$, then $max(k_0, l_0) leqslant m_1 leqslant k_0 + l_0$ (note that $2m_1 + 1 geqslant 2l_0 Rightarrow m_1 geqslant l_0$). For any $j geqslant 1$, by lemma 1,$$
left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right < 1.
$$
Note that$$
2m_1 + 1 - 2l_0 notequiv 0 pmod2^j + 1 Longrightarrow left frac2m_1 + 1 - 2l_02^j + 1 right geqslant frac12^j + 1,
$$
thusbeginalign*
&peq left fracm_1 - k_02^j right + left fracm_1 - l_02^j right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 - frac12^j + 1 right + left frack_0 + l_0 - m_12^j right\
&= left fracm_1 - k_02^j right + left frac2m_1 + 1 - 2l_02^j + 1 right - frac12^j + 1 + left frack_0 + l_0 - m_12^j right\
&= left frac2m_1 + 1 - 2k_0 - 12^j + 1 right + left frac2m_1 + 1 - 2l_02^j + 1 right + left frac2k_0 + 1 + 2l_0 - 2m_1 - 12^j + 1 right - frac12^j + 1\
&< 1 - frac12^j + 1 < 1,
endalign*
which by lemma 1 and induction hypothesis implies $m_1 = f(k_0, l_0)$.
Case 3: Both $k$ and $l$ are odd. Suppose $k = 2k_0 + 1$, $l = 2l_0 + 1$. If at least one of $k_0$ and $l_0$ is $0$, without loss of generality, assume that $k_0 = 0$, then $2l_0 + 1 leqslant m leqslant 2l_0 + 2$ and $m = 2l_0 + 1$ is the only $m$ that satisfies the requirements.
Now suppose $k_0, l_0 geqslant 1$ and take $m_0 = f(k_0, l_0)$. By deduction analogous to case 2, $m = 2m_0 + 1$ is the only $m$ that satisfies the requirements.
Therefore, the proposition holds for $1 leqslant k, l leqslant 2^r + 1$. End of induction.
Step 3: For any $k, l geqslant 1$, there is $f(k, l) = k lor l$, where $lor$ represents bitwise OR (e.g. $5 lor 13 = (0101)_2 lor (1101)_2 = (1101)_2 = 13$), and for any $n geqslant 1$,$$
c_n(k) c_n(l) = begincases
c_n(k lor l); & k lor l leqslant n\
0; & k lor l > n
endcases.
$$
Proof: From the proof of step 2, $f$ satisfies the following recurrence relations for $k, l geqslant 2$:$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases,
$$
and $f(k, 1) = f(1, k) = 2 left[ dfrack2 right] + 1$ for $k geqslant 1$. If further define $f(k, 0) = f(0, k) = k$ for $k geqslant 0$, then$$
f(k, l) = begincases
2 fleft( frack2, fracl2 right); & 2 mid k, 2 mid l\
2 fleft( left[ frack2 right], left[ fracl2 right] right) + 1; & textotherwise
endcases
$$
hold for $k, l geqslant 1$. Now it is easy to prove by induction on $k geqslant 0$ that $f(k, l) = k lor l (forall l geqslant 0)$.
Finally, for any $n geqslant 1$ and $1 leqslant k, l leqslant n$, if $k lor l leqslant n$, then step 1 and step 2 imply $b_k lor l = 1$, $b_m = 0 (m ≠k lor l)$ and $c_n(k) c_n(l) = c_n(k lor l)$. Otherwise, step 1 and step 2 imply $b_m = 0$ for all $m$ and $c_n(k) c_n(l) = 0$.
answered Jul 27 at 15:02


Alex Francisco
15.6k92047
15.6k92047
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
add a comment |Â
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
Thank you very much, although I preferred to reward the other answer because it looks simpler to me. See the comment below regarding the binary representation with $c_n(2^i)$ coefficients.
– mbjoe
Jul 28 at 7:07
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860113%2fboolean-algebra-ring-compute-product-of-sum-of-combinations-of-variables%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Your second product identity can be generalized to $c_n(k)c_n(n)=0$ if $binomnk$ is even.
– Richard
Jul 23 at 9:38