Can we approximate a sigma-algebra by an increasing sequence of finite sigma-algebras?
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
$newcommandNmathbb N$
$newcommandmcmathcal$
$newcommandset[1]#1$
Definition.
We say that a measure space $(X, mc F, mu)$ has a countable basis if there is a collection $setE_n_nin N$ of measurable subsets of $X$ such that for all $varepsilon>0$ and for all $Ein mc F$, there is $n$ such that $mu(E_nDelta E)< varepsilon$.
Question. With notation as in the above definition, is it true that if $mc G$ denotes the $sigma$-algebra generated by $setE_n_nin N$, then for all $Fin mc F$, there if $Gin mc G$ such that $mu(FDelta G)=0$?
measure-theory
add a comment |Â
up vote
2
down vote
favorite
$newcommandNmathbb N$
$newcommandmcmathcal$
$newcommandset[1]#1$
Definition.
We say that a measure space $(X, mc F, mu)$ has a countable basis if there is a collection $setE_n_nin N$ of measurable subsets of $X$ such that for all $varepsilon>0$ and for all $Ein mc F$, there is $n$ such that $mu(E_nDelta E)< varepsilon$.
Question. With notation as in the above definition, is it true that if $mc G$ denotes the $sigma$-algebra generated by $setE_n_nin N$, then for all $Fin mc F$, there if $Gin mc G$ such that $mu(FDelta G)=0$?
measure-theory
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
$newcommandNmathbb N$
$newcommandmcmathcal$
$newcommandset[1]#1$
Definition.
We say that a measure space $(X, mc F, mu)$ has a countable basis if there is a collection $setE_n_nin N$ of measurable subsets of $X$ such that for all $varepsilon>0$ and for all $Ein mc F$, there is $n$ such that $mu(E_nDelta E)< varepsilon$.
Question. With notation as in the above definition, is it true that if $mc G$ denotes the $sigma$-algebra generated by $setE_n_nin N$, then for all $Fin mc F$, there if $Gin mc G$ such that $mu(FDelta G)=0$?
measure-theory
$newcommandNmathbb N$
$newcommandmcmathcal$
$newcommandset[1]#1$
Definition.
We say that a measure space $(X, mc F, mu)$ has a countable basis if there is a collection $setE_n_nin N$ of measurable subsets of $X$ such that for all $varepsilon>0$ and for all $Ein mc F$, there is $n$ such that $mu(E_nDelta E)< varepsilon$.
Question. With notation as in the above definition, is it true that if $mc G$ denotes the $sigma$-algebra generated by $setE_n_nin N$, then for all $Fin mc F$, there if $Gin mc G$ such that $mu(FDelta G)=0$?
measure-theory
asked Jul 23 at 5:38
caffeinemachine
6,07221145
6,07221145
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
Let $mu (E_n_k Delta E)<frac 1 2^k$ for each $k$. Then $sum_k mu (E_n_k Delta E)<infty $ so $mu ( lim sup_k (E_n_k Delta E))=0$. This implies $mu (FDelta E)=0$ where $F=lim sup E_n_k$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Let $mu (E_n_k Delta E)<frac 1 2^k$ for each $k$. Then $sum_k mu (E_n_k Delta E)<infty $ so $mu ( lim sup_k (E_n_k Delta E))=0$. This implies $mu (FDelta E)=0$ where $F=lim sup E_n_k$.
add a comment |Â
up vote
2
down vote
accepted
Let $mu (E_n_k Delta E)<frac 1 2^k$ for each $k$. Then $sum_k mu (E_n_k Delta E)<infty $ so $mu ( lim sup_k (E_n_k Delta E))=0$. This implies $mu (FDelta E)=0$ where $F=lim sup E_n_k$.
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Let $mu (E_n_k Delta E)<frac 1 2^k$ for each $k$. Then $sum_k mu (E_n_k Delta E)<infty $ so $mu ( lim sup_k (E_n_k Delta E))=0$. This implies $mu (FDelta E)=0$ where $F=lim sup E_n_k$.
Let $mu (E_n_k Delta E)<frac 1 2^k$ for each $k$. Then $sum_k mu (E_n_k Delta E)<infty $ so $mu ( lim sup_k (E_n_k Delta E))=0$. This implies $mu (FDelta E)=0$ where $F=lim sup E_n_k$.
answered Jul 23 at 7:26


Kavi Rama Murthy
20.4k2830
20.4k2830
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860036%2fcan-we-approximate-a-sigma-algebra-by-an-increasing-sequence-of-finite-sigma-alg%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password