Compactly supported bounded functions with zero integral are dense in Lp spaces
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
As in the title, I want to know if compactly supported bounded functions with zero mean, i.e. $int f dx= 0$, are dense in $L^p$ for any $ 1 <p< infty $. I feel like there should be some counterexamples to this but could not think of one.
Thanks in advance.
real-analysis
add a comment |Â
up vote
2
down vote
favorite
As in the title, I want to know if compactly supported bounded functions with zero mean, i.e. $int f dx= 0$, are dense in $L^p$ for any $ 1 <p< infty $. I feel like there should be some counterexamples to this but could not think of one.
Thanks in advance.
real-analysis
en.wikipedia.org/wiki/Haar_wavelet
– Lorenzo
Jul 26 at 3:50
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
As in the title, I want to know if compactly supported bounded functions with zero mean, i.e. $int f dx= 0$, are dense in $L^p$ for any $ 1 <p< infty $. I feel like there should be some counterexamples to this but could not think of one.
Thanks in advance.
real-analysis
As in the title, I want to know if compactly supported bounded functions with zero mean, i.e. $int f dx= 0$, are dense in $L^p$ for any $ 1 <p< infty $. I feel like there should be some counterexamples to this but could not think of one.
Thanks in advance.
real-analysis
asked Jul 26 at 3:39
Lim
132
132
en.wikipedia.org/wiki/Haar_wavelet
– Lorenzo
Jul 26 at 3:50
add a comment |Â
en.wikipedia.org/wiki/Haar_wavelet
– Lorenzo
Jul 26 at 3:50
en.wikipedia.org/wiki/Haar_wavelet
– Lorenzo
Jul 26 at 3:50
en.wikipedia.org/wiki/Haar_wavelet
– Lorenzo
Jul 26 at 3:50
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Take $f in L^p(mathbb R^n),$ where $pin (1,infty)$. Let $epsilon > 0$. Then there is $g in C^infty_c (mathbb R^n)$ such that $$| f - g |_L^p(mathbb R^n) < epsilon.$$ Define the constant $$C = int_mathbb R^n g(x) dx,$$ and define a sequence $$g_k(x) = g(x) - fracC(2k)^n chi_[-k,k]^n(x),$$ where $chi_[-k,k]^n$ is the indicator function of the hypercube $[-k,k]^n$. Notice that $$int_mathbb R^n g_k(x) dx = C - fracC(2k)^n textVol([-k,k]^n) = 0.$$ Thus $g_k$ is a bounded function with compact support and $int_mathbb R^n g_k(x) dx = 0$. Consider, $$| f - g_k |_L^p(mathbb R^n) le | f - g|_L^p(mathbb R^n) + fracC(2k)^n | chi_[-k,k]^n|_L^p(mathbb R^n)$$ and $$| chi_[-k,k]^n|_L^p(mathbb R^n) = (2k)^n/p.$$ This shows that $$|f - g_k|_L^p(mathbb R^n) le underbrace_L^p(mathbb R^n)_,,,,,,,< epsilon + underbracefracC(2k)^n(1-1/p)_,,,to 0 text as k to infty. $$ Thus for $k$ sufficiently large, $$| f - g_k |_L^p(mathbb R^n) < 2 epsilon.$$ Hence, $f$ can be approximated arbitrarily well in $L^p(mathbb R^n)$ by a bounded, compactly supported function which integrates to zero.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Take $f in L^p(mathbb R^n),$ where $pin (1,infty)$. Let $epsilon > 0$. Then there is $g in C^infty_c (mathbb R^n)$ such that $$| f - g |_L^p(mathbb R^n) < epsilon.$$ Define the constant $$C = int_mathbb R^n g(x) dx,$$ and define a sequence $$g_k(x) = g(x) - fracC(2k)^n chi_[-k,k]^n(x),$$ where $chi_[-k,k]^n$ is the indicator function of the hypercube $[-k,k]^n$. Notice that $$int_mathbb R^n g_k(x) dx = C - fracC(2k)^n textVol([-k,k]^n) = 0.$$ Thus $g_k$ is a bounded function with compact support and $int_mathbb R^n g_k(x) dx = 0$. Consider, $$| f - g_k |_L^p(mathbb R^n) le | f - g|_L^p(mathbb R^n) + fracC(2k)^n | chi_[-k,k]^n|_L^p(mathbb R^n)$$ and $$| chi_[-k,k]^n|_L^p(mathbb R^n) = (2k)^n/p.$$ This shows that $$|f - g_k|_L^p(mathbb R^n) le underbrace_L^p(mathbb R^n)_,,,,,,,< epsilon + underbracefracC(2k)^n(1-1/p)_,,,to 0 text as k to infty. $$ Thus for $k$ sufficiently large, $$| f - g_k |_L^p(mathbb R^n) < 2 epsilon.$$ Hence, $f$ can be approximated arbitrarily well in $L^p(mathbb R^n)$ by a bounded, compactly supported function which integrates to zero.
add a comment |Â
up vote
1
down vote
accepted
Take $f in L^p(mathbb R^n),$ where $pin (1,infty)$. Let $epsilon > 0$. Then there is $g in C^infty_c (mathbb R^n)$ such that $$| f - g |_L^p(mathbb R^n) < epsilon.$$ Define the constant $$C = int_mathbb R^n g(x) dx,$$ and define a sequence $$g_k(x) = g(x) - fracC(2k)^n chi_[-k,k]^n(x),$$ where $chi_[-k,k]^n$ is the indicator function of the hypercube $[-k,k]^n$. Notice that $$int_mathbb R^n g_k(x) dx = C - fracC(2k)^n textVol([-k,k]^n) = 0.$$ Thus $g_k$ is a bounded function with compact support and $int_mathbb R^n g_k(x) dx = 0$. Consider, $$| f - g_k |_L^p(mathbb R^n) le | f - g|_L^p(mathbb R^n) + fracC(2k)^n | chi_[-k,k]^n|_L^p(mathbb R^n)$$ and $$| chi_[-k,k]^n|_L^p(mathbb R^n) = (2k)^n/p.$$ This shows that $$|f - g_k|_L^p(mathbb R^n) le underbrace_L^p(mathbb R^n)_,,,,,,,< epsilon + underbracefracC(2k)^n(1-1/p)_,,,to 0 text as k to infty. $$ Thus for $k$ sufficiently large, $$| f - g_k |_L^p(mathbb R^n) < 2 epsilon.$$ Hence, $f$ can be approximated arbitrarily well in $L^p(mathbb R^n)$ by a bounded, compactly supported function which integrates to zero.
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Take $f in L^p(mathbb R^n),$ where $pin (1,infty)$. Let $epsilon > 0$. Then there is $g in C^infty_c (mathbb R^n)$ such that $$| f - g |_L^p(mathbb R^n) < epsilon.$$ Define the constant $$C = int_mathbb R^n g(x) dx,$$ and define a sequence $$g_k(x) = g(x) - fracC(2k)^n chi_[-k,k]^n(x),$$ where $chi_[-k,k]^n$ is the indicator function of the hypercube $[-k,k]^n$. Notice that $$int_mathbb R^n g_k(x) dx = C - fracC(2k)^n textVol([-k,k]^n) = 0.$$ Thus $g_k$ is a bounded function with compact support and $int_mathbb R^n g_k(x) dx = 0$. Consider, $$| f - g_k |_L^p(mathbb R^n) le | f - g|_L^p(mathbb R^n) + fracC(2k)^n | chi_[-k,k]^n|_L^p(mathbb R^n)$$ and $$| chi_[-k,k]^n|_L^p(mathbb R^n) = (2k)^n/p.$$ This shows that $$|f - g_k|_L^p(mathbb R^n) le underbrace_L^p(mathbb R^n)_,,,,,,,< epsilon + underbracefracC(2k)^n(1-1/p)_,,,to 0 text as k to infty. $$ Thus for $k$ sufficiently large, $$| f - g_k |_L^p(mathbb R^n) < 2 epsilon.$$ Hence, $f$ can be approximated arbitrarily well in $L^p(mathbb R^n)$ by a bounded, compactly supported function which integrates to zero.
Take $f in L^p(mathbb R^n),$ where $pin (1,infty)$. Let $epsilon > 0$. Then there is $g in C^infty_c (mathbb R^n)$ such that $$| f - g |_L^p(mathbb R^n) < epsilon.$$ Define the constant $$C = int_mathbb R^n g(x) dx,$$ and define a sequence $$g_k(x) = g(x) - fracC(2k)^n chi_[-k,k]^n(x),$$ where $chi_[-k,k]^n$ is the indicator function of the hypercube $[-k,k]^n$. Notice that $$int_mathbb R^n g_k(x) dx = C - fracC(2k)^n textVol([-k,k]^n) = 0.$$ Thus $g_k$ is a bounded function with compact support and $int_mathbb R^n g_k(x) dx = 0$. Consider, $$| f - g_k |_L^p(mathbb R^n) le | f - g|_L^p(mathbb R^n) + fracC(2k)^n | chi_[-k,k]^n|_L^p(mathbb R^n)$$ and $$| chi_[-k,k]^n|_L^p(mathbb R^n) = (2k)^n/p.$$ This shows that $$|f - g_k|_L^p(mathbb R^n) le underbrace_L^p(mathbb R^n)_,,,,,,,< epsilon + underbracefracC(2k)^n(1-1/p)_,,,to 0 text as k to infty. $$ Thus for $k$ sufficiently large, $$| f - g_k |_L^p(mathbb R^n) < 2 epsilon.$$ Hence, $f$ can be approximated arbitrarily well in $L^p(mathbb R^n)$ by a bounded, compactly supported function which integrates to zero.
answered Jul 26 at 4:06
User8128
10.2k1522
10.2k1522
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863055%2fcompactly-supported-bounded-functions-with-zero-integral-are-dense-in-lp-spaces%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
en.wikipedia.org/wiki/Haar_wavelet
– Lorenzo
Jul 26 at 3:50