Show that $T$ is a linear transformation and find a basis for $N(T)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Consider the vector space of 2-by-2 matrices $M_2times 2(mathbbR)$ over $mathbbR$. For a given matrix A=$beginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix$, consider the map $T:M_2times 2(mathbbR) to mathbbR$ given by $T(A)=a_2,1$



$a)$ Show that T is a linear transformation.



Definition: Let $V$ and $W$ be vector spaces over $F$. We call a function $T : V to W$ a linear
transformation from $V$ to $W$ if, for all $x, y in V$ and $c in F$, we have



$(1) T (x + y) = T (x) + T (y)$



$(2) T (cx) = cT (x)$



Using this definition this is the solution I came up with



$T(cbeginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix+beginpmatrixb_1,1 &b_1,2\b_2,1&b_2,2endpmatrix) =c(a_2,1)+(b_2,1)=cT(A)+T(B)$



$b)$ Find a basis for $N(T)$



Definition: Null Space $N(T )=x in V : T (x) = 0$.



Not sure where to begin with this. The following questions I assume can only be solved if finding a solution to $b)$



$c)$ Calculate the dimension of $N(T)$.



$d)$ Find a basis for $R(T)$



Thanks in advance.







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    Consider the vector space of 2-by-2 matrices $M_2times 2(mathbbR)$ over $mathbbR$. For a given matrix A=$beginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix$, consider the map $T:M_2times 2(mathbbR) to mathbbR$ given by $T(A)=a_2,1$



    $a)$ Show that T is a linear transformation.



    Definition: Let $V$ and $W$ be vector spaces over $F$. We call a function $T : V to W$ a linear
    transformation from $V$ to $W$ if, for all $x, y in V$ and $c in F$, we have



    $(1) T (x + y) = T (x) + T (y)$



    $(2) T (cx) = cT (x)$



    Using this definition this is the solution I came up with



    $T(cbeginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix+beginpmatrixb_1,1 &b_1,2\b_2,1&b_2,2endpmatrix) =c(a_2,1)+(b_2,1)=cT(A)+T(B)$



    $b)$ Find a basis for $N(T)$



    Definition: Null Space $N(T )=x in V : T (x) = 0$.



    Not sure where to begin with this. The following questions I assume can only be solved if finding a solution to $b)$



    $c)$ Calculate the dimension of $N(T)$.



    $d)$ Find a basis for $R(T)$



    Thanks in advance.







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Consider the vector space of 2-by-2 matrices $M_2times 2(mathbbR)$ over $mathbbR$. For a given matrix A=$beginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix$, consider the map $T:M_2times 2(mathbbR) to mathbbR$ given by $T(A)=a_2,1$



      $a)$ Show that T is a linear transformation.



      Definition: Let $V$ and $W$ be vector spaces over $F$. We call a function $T : V to W$ a linear
      transformation from $V$ to $W$ if, for all $x, y in V$ and $c in F$, we have



      $(1) T (x + y) = T (x) + T (y)$



      $(2) T (cx) = cT (x)$



      Using this definition this is the solution I came up with



      $T(cbeginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix+beginpmatrixb_1,1 &b_1,2\b_2,1&b_2,2endpmatrix) =c(a_2,1)+(b_2,1)=cT(A)+T(B)$



      $b)$ Find a basis for $N(T)$



      Definition: Null Space $N(T )=x in V : T (x) = 0$.



      Not sure where to begin with this. The following questions I assume can only be solved if finding a solution to $b)$



      $c)$ Calculate the dimension of $N(T)$.



      $d)$ Find a basis for $R(T)$



      Thanks in advance.







      share|cite|improve this question













      Consider the vector space of 2-by-2 matrices $M_2times 2(mathbbR)$ over $mathbbR$. For a given matrix A=$beginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix$, consider the map $T:M_2times 2(mathbbR) to mathbbR$ given by $T(A)=a_2,1$



      $a)$ Show that T is a linear transformation.



      Definition: Let $V$ and $W$ be vector spaces over $F$. We call a function $T : V to W$ a linear
      transformation from $V$ to $W$ if, for all $x, y in V$ and $c in F$, we have



      $(1) T (x + y) = T (x) + T (y)$



      $(2) T (cx) = cT (x)$



      Using this definition this is the solution I came up with



      $T(cbeginpmatrixa_1,1 &a_1,2\a_2,1&a_2,2endpmatrix+beginpmatrixb_1,1 &b_1,2\b_2,1&b_2,2endpmatrix) =c(a_2,1)+(b_2,1)=cT(A)+T(B)$



      $b)$ Find a basis for $N(T)$



      Definition: Null Space $N(T )=x in V : T (x) = 0$.



      Not sure where to begin with this. The following questions I assume can only be solved if finding a solution to $b)$



      $c)$ Calculate the dimension of $N(T)$.



      $d)$ Find a basis for $R(T)$



      Thanks in advance.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 25 at 11:58









      Kenta S

      1,1371418




      1,1371418









      asked Jul 25 at 10:54









      Ben Jones

      17911




      17911




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          You solution to part (a) seems to be just fine. For part (b):



          Consider what is needed for a matrix $AinmathbbR^(2,2)$ to map to $0$ under $T$, i.e. $T(A)=0$, i.e. $a_2,1=0$. Thus



          $$
          N(T)=AinmathbbR^(2,2)mid a_2,1=0=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrixinmathbbR^(2,2)
          $$



          The classical basis for $mathbbR^(2,2)$ is the basis associated with the canonical basis for $mathbbR^4$:



          $$
          beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\1 &0endpmatrix, beginpmatrix0 &0\0 &1endpmatrix
          $$



          You may check that these are indeed linear independent and span $mathbbR^(2,2)$. Coming back to the null space of $T$, you can see that every matrix $Ain N(T)$, i.e. every matrix of the form



          $$
          beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix
          $$



          can be created as a linear combination of



          $$
          beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\0 &1endpmatrix
          $$



          with



          $$
          beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix=a_1,1beginpmatrix1 &0\0 &0endpmatrix + a_1,2 beginpmatrix0 &1\0 &0endpmatrix+ a_2,2beginpmatrix0 &0\0 &1endpmatrix
          $$



          as the defining condition for $N(T)$ is a zero at position $a_2,1$. As we found a set of linear independent vectors(the three matrices above) that span $N(T)$, we've found a basis for the concerned space. Followingly, as an answer to part (c), we find that $mathrmdim(N(T))=3$.



          Note, that by the rank-nullity theorem(and assuming that $R(T)$ means the range of $T$), we have that



          $$
          4=mathrmdim(mathbbR^(2,2))=mathrmdim(N(T))+mathrmdim(R(T))=3+mathrmdim(R(T))
          $$



          Therefore, $mathrmdim(R(T))=1$, i.e. as $T:mathbbR^(2,2)tomathbbR$, we have $R(T)=mathbbR$. A typical basis for $mathbbR$ as a vector space is the number $1$.






          share|cite|improve this answer




























            up vote
            0
            down vote













            Let $A_1= beginpmatrix1 &0\0 &0endpmatrix$, $A_2= beginpmatrix0 &1\0 &0endpmatrix$ and $A_3= beginpmatrix0 &0\0 &1endpmatrix$, then



            $A in N(T) iff A=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix iff $



            $A in span A_1,A_2,A_3 $.



            Can you proceed ?






            share|cite|improve this answer




























              up vote
              0
              down vote













              a. Let $X=[x_i,j],Y=[y_i,j]$ be 2x2 matrices and $cin F$.
              (1) $T(X+Y) = x_2,1 + y_2,1 = T(X)+T(Y)$
              (2)$T(cX) = cx_2,1 = cT(X). $
              This proves that T is a linear trasformation.



              b. $N(T) = leftlbrace A = [a_i,j] | a_2,1=0 rightrbrace
              = Spanleft( leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace right)$



              Show that $leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace$ is linearly independent to how that it is a basis.






              share|cite|improve this answer





















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );








                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862299%2fshow-that-t-is-a-linear-transformation-and-find-a-basis-for-nt%23new-answer', 'question_page');

                );

                Post as a guest






























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                1
                down vote



                accepted










                You solution to part (a) seems to be just fine. For part (b):



                Consider what is needed for a matrix $AinmathbbR^(2,2)$ to map to $0$ under $T$, i.e. $T(A)=0$, i.e. $a_2,1=0$. Thus



                $$
                N(T)=AinmathbbR^(2,2)mid a_2,1=0=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrixinmathbbR^(2,2)
                $$



                The classical basis for $mathbbR^(2,2)$ is the basis associated with the canonical basis for $mathbbR^4$:



                $$
                beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\1 &0endpmatrix, beginpmatrix0 &0\0 &1endpmatrix
                $$



                You may check that these are indeed linear independent and span $mathbbR^(2,2)$. Coming back to the null space of $T$, you can see that every matrix $Ain N(T)$, i.e. every matrix of the form



                $$
                beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix
                $$



                can be created as a linear combination of



                $$
                beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\0 &1endpmatrix
                $$



                with



                $$
                beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix=a_1,1beginpmatrix1 &0\0 &0endpmatrix + a_1,2 beginpmatrix0 &1\0 &0endpmatrix+ a_2,2beginpmatrix0 &0\0 &1endpmatrix
                $$



                as the defining condition for $N(T)$ is a zero at position $a_2,1$. As we found a set of linear independent vectors(the three matrices above) that span $N(T)$, we've found a basis for the concerned space. Followingly, as an answer to part (c), we find that $mathrmdim(N(T))=3$.



                Note, that by the rank-nullity theorem(and assuming that $R(T)$ means the range of $T$), we have that



                $$
                4=mathrmdim(mathbbR^(2,2))=mathrmdim(N(T))+mathrmdim(R(T))=3+mathrmdim(R(T))
                $$



                Therefore, $mathrmdim(R(T))=1$, i.e. as $T:mathbbR^(2,2)tomathbbR$, we have $R(T)=mathbbR$. A typical basis for $mathbbR$ as a vector space is the number $1$.






                share|cite|improve this answer

























                  up vote
                  1
                  down vote



                  accepted










                  You solution to part (a) seems to be just fine. For part (b):



                  Consider what is needed for a matrix $AinmathbbR^(2,2)$ to map to $0$ under $T$, i.e. $T(A)=0$, i.e. $a_2,1=0$. Thus



                  $$
                  N(T)=AinmathbbR^(2,2)mid a_2,1=0=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrixinmathbbR^(2,2)
                  $$



                  The classical basis for $mathbbR^(2,2)$ is the basis associated with the canonical basis for $mathbbR^4$:



                  $$
                  beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\1 &0endpmatrix, beginpmatrix0 &0\0 &1endpmatrix
                  $$



                  You may check that these are indeed linear independent and span $mathbbR^(2,2)$. Coming back to the null space of $T$, you can see that every matrix $Ain N(T)$, i.e. every matrix of the form



                  $$
                  beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix
                  $$



                  can be created as a linear combination of



                  $$
                  beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\0 &1endpmatrix
                  $$



                  with



                  $$
                  beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix=a_1,1beginpmatrix1 &0\0 &0endpmatrix + a_1,2 beginpmatrix0 &1\0 &0endpmatrix+ a_2,2beginpmatrix0 &0\0 &1endpmatrix
                  $$



                  as the defining condition for $N(T)$ is a zero at position $a_2,1$. As we found a set of linear independent vectors(the three matrices above) that span $N(T)$, we've found a basis for the concerned space. Followingly, as an answer to part (c), we find that $mathrmdim(N(T))=3$.



                  Note, that by the rank-nullity theorem(and assuming that $R(T)$ means the range of $T$), we have that



                  $$
                  4=mathrmdim(mathbbR^(2,2))=mathrmdim(N(T))+mathrmdim(R(T))=3+mathrmdim(R(T))
                  $$



                  Therefore, $mathrmdim(R(T))=1$, i.e. as $T:mathbbR^(2,2)tomathbbR$, we have $R(T)=mathbbR$. A typical basis for $mathbbR$ as a vector space is the number $1$.






                  share|cite|improve this answer























                    up vote
                    1
                    down vote



                    accepted







                    up vote
                    1
                    down vote



                    accepted






                    You solution to part (a) seems to be just fine. For part (b):



                    Consider what is needed for a matrix $AinmathbbR^(2,2)$ to map to $0$ under $T$, i.e. $T(A)=0$, i.e. $a_2,1=0$. Thus



                    $$
                    N(T)=AinmathbbR^(2,2)mid a_2,1=0=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrixinmathbbR^(2,2)
                    $$



                    The classical basis for $mathbbR^(2,2)$ is the basis associated with the canonical basis for $mathbbR^4$:



                    $$
                    beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\1 &0endpmatrix, beginpmatrix0 &0\0 &1endpmatrix
                    $$



                    You may check that these are indeed linear independent and span $mathbbR^(2,2)$. Coming back to the null space of $T$, you can see that every matrix $Ain N(T)$, i.e. every matrix of the form



                    $$
                    beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix
                    $$



                    can be created as a linear combination of



                    $$
                    beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\0 &1endpmatrix
                    $$



                    with



                    $$
                    beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix=a_1,1beginpmatrix1 &0\0 &0endpmatrix + a_1,2 beginpmatrix0 &1\0 &0endpmatrix+ a_2,2beginpmatrix0 &0\0 &1endpmatrix
                    $$



                    as the defining condition for $N(T)$ is a zero at position $a_2,1$. As we found a set of linear independent vectors(the three matrices above) that span $N(T)$, we've found a basis for the concerned space. Followingly, as an answer to part (c), we find that $mathrmdim(N(T))=3$.



                    Note, that by the rank-nullity theorem(and assuming that $R(T)$ means the range of $T$), we have that



                    $$
                    4=mathrmdim(mathbbR^(2,2))=mathrmdim(N(T))+mathrmdim(R(T))=3+mathrmdim(R(T))
                    $$



                    Therefore, $mathrmdim(R(T))=1$, i.e. as $T:mathbbR^(2,2)tomathbbR$, we have $R(T)=mathbbR$. A typical basis for $mathbbR$ as a vector space is the number $1$.






                    share|cite|improve this answer













                    You solution to part (a) seems to be just fine. For part (b):



                    Consider what is needed for a matrix $AinmathbbR^(2,2)$ to map to $0$ under $T$, i.e. $T(A)=0$, i.e. $a_2,1=0$. Thus



                    $$
                    N(T)=AinmathbbR^(2,2)mid a_2,1=0=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrixinmathbbR^(2,2)
                    $$



                    The classical basis for $mathbbR^(2,2)$ is the basis associated with the canonical basis for $mathbbR^4$:



                    $$
                    beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\1 &0endpmatrix, beginpmatrix0 &0\0 &1endpmatrix
                    $$



                    You may check that these are indeed linear independent and span $mathbbR^(2,2)$. Coming back to the null space of $T$, you can see that every matrix $Ain N(T)$, i.e. every matrix of the form



                    $$
                    beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix
                    $$



                    can be created as a linear combination of



                    $$
                    beginpmatrix1 &0\0 &0endpmatrix, beginpmatrix0 &1\0 &0endpmatrix,beginpmatrix0 &0\0 &1endpmatrix
                    $$



                    with



                    $$
                    beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix=a_1,1beginpmatrix1 &0\0 &0endpmatrix + a_1,2 beginpmatrix0 &1\0 &0endpmatrix+ a_2,2beginpmatrix0 &0\0 &1endpmatrix
                    $$



                    as the defining condition for $N(T)$ is a zero at position $a_2,1$. As we found a set of linear independent vectors(the three matrices above) that span $N(T)$, we've found a basis for the concerned space. Followingly, as an answer to part (c), we find that $mathrmdim(N(T))=3$.



                    Note, that by the rank-nullity theorem(and assuming that $R(T)$ means the range of $T$), we have that



                    $$
                    4=mathrmdim(mathbbR^(2,2))=mathrmdim(N(T))+mathrmdim(R(T))=3+mathrmdim(R(T))
                    $$



                    Therefore, $mathrmdim(R(T))=1$, i.e. as $T:mathbbR^(2,2)tomathbbR$, we have $R(T)=mathbbR$. A typical basis for $mathbbR$ as a vector space is the number $1$.







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 25 at 11:16









                    zzuussee

                    1,514419




                    1,514419




















                        up vote
                        0
                        down vote













                        Let $A_1= beginpmatrix1 &0\0 &0endpmatrix$, $A_2= beginpmatrix0 &1\0 &0endpmatrix$ and $A_3= beginpmatrix0 &0\0 &1endpmatrix$, then



                        $A in N(T) iff A=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix iff $



                        $A in span A_1,A_2,A_3 $.



                        Can you proceed ?






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          Let $A_1= beginpmatrix1 &0\0 &0endpmatrix$, $A_2= beginpmatrix0 &1\0 &0endpmatrix$ and $A_3= beginpmatrix0 &0\0 &1endpmatrix$, then



                          $A in N(T) iff A=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix iff $



                          $A in span A_1,A_2,A_3 $.



                          Can you proceed ?






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            Let $A_1= beginpmatrix1 &0\0 &0endpmatrix$, $A_2= beginpmatrix0 &1\0 &0endpmatrix$ and $A_3= beginpmatrix0 &0\0 &1endpmatrix$, then



                            $A in N(T) iff A=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix iff $



                            $A in span A_1,A_2,A_3 $.



                            Can you proceed ?






                            share|cite|improve this answer













                            Let $A_1= beginpmatrix1 &0\0 &0endpmatrix$, $A_2= beginpmatrix0 &1\0 &0endpmatrix$ and $A_3= beginpmatrix0 &0\0 &1endpmatrix$, then



                            $A in N(T) iff A=beginpmatrixa_1,1 &a_1,2\0 &a_2,2endpmatrix iff $



                            $A in span A_1,A_2,A_3 $.



                            Can you proceed ?







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 25 at 11:04









                            Fred

                            37.2k1237




                            37.2k1237




















                                up vote
                                0
                                down vote













                                a. Let $X=[x_i,j],Y=[y_i,j]$ be 2x2 matrices and $cin F$.
                                (1) $T(X+Y) = x_2,1 + y_2,1 = T(X)+T(Y)$
                                (2)$T(cX) = cx_2,1 = cT(X). $
                                This proves that T is a linear trasformation.



                                b. $N(T) = leftlbrace A = [a_i,j] | a_2,1=0 rightrbrace
                                = Spanleft( leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace right)$



                                Show that $leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace$ is linearly independent to how that it is a basis.






                                share|cite|improve this answer

























                                  up vote
                                  0
                                  down vote













                                  a. Let $X=[x_i,j],Y=[y_i,j]$ be 2x2 matrices and $cin F$.
                                  (1) $T(X+Y) = x_2,1 + y_2,1 = T(X)+T(Y)$
                                  (2)$T(cX) = cx_2,1 = cT(X). $
                                  This proves that T is a linear trasformation.



                                  b. $N(T) = leftlbrace A = [a_i,j] | a_2,1=0 rightrbrace
                                  = Spanleft( leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace right)$



                                  Show that $leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace$ is linearly independent to how that it is a basis.






                                  share|cite|improve this answer























                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    a. Let $X=[x_i,j],Y=[y_i,j]$ be 2x2 matrices and $cin F$.
                                    (1) $T(X+Y) = x_2,1 + y_2,1 = T(X)+T(Y)$
                                    (2)$T(cX) = cx_2,1 = cT(X). $
                                    This proves that T is a linear trasformation.



                                    b. $N(T) = leftlbrace A = [a_i,j] | a_2,1=0 rightrbrace
                                    = Spanleft( leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace right)$



                                    Show that $leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace$ is linearly independent to how that it is a basis.






                                    share|cite|improve this answer













                                    a. Let $X=[x_i,j],Y=[y_i,j]$ be 2x2 matrices and $cin F$.
                                    (1) $T(X+Y) = x_2,1 + y_2,1 = T(X)+T(Y)$
                                    (2)$T(cX) = cx_2,1 = cT(X). $
                                    This proves that T is a linear trasformation.



                                    b. $N(T) = leftlbrace A = [a_i,j] | a_2,1=0 rightrbrace
                                    = Spanleft( leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace right)$



                                    Show that $leftlbrace left[ beginarraycc 1&0\0&0endarrayright] , left[ beginarraycc 0&1\0&0endarrayright],left[ beginarraycc 0&0\0&1endarrayright] rightrbrace$ is linearly independent to how that it is a basis.







                                    share|cite|improve this answer













                                    share|cite|improve this answer



                                    share|cite|improve this answer











                                    answered Jul 25 at 11:13









                                    Jared S.

                                    1




                                    1






















                                         

                                        draft saved


                                        draft discarded


























                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862299%2fshow-that-t-is-a-linear-transformation-and-find-a-basis-for-nt%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        Comments

                                        Popular posts from this blog

                                        What is the equation of a 3D cone with generalised tilt?

                                        Color the edges and diagonals of a regular polygon

                                        Relationship between determinant of matrix and determinant of adjoint?