How to calculate $int_0^pi/4sin^n+1thetacos^n-1theta dtheta$?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
My approach is to use the properties of the beta function. But the limits of integration are from zero to $fracpi4$. We know that
$$
B(m,n) = 2int_0^pi/2sin^2m-1theta cos^2n-1theta dtheta = dfracGamma(m)Gamma(n)Gamma(m+n)
$$
Thanks for any help.
calculus integration definite-integrals special-functions
add a comment |Â
up vote
3
down vote
favorite
My approach is to use the properties of the beta function. But the limits of integration are from zero to $fracpi4$. We know that
$$
B(m,n) = 2int_0^pi/2sin^2m-1theta cos^2n-1theta dtheta = dfracGamma(m)Gamma(n)Gamma(m+n)
$$
Thanks for any help.
calculus integration definite-integrals special-functions
$$sin^n+1tcos^n-1t=dfractan^n+1tsec^2tsec^2n+2t$$
â lab bhattacharjee
Jul 25 at 14:32
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
My approach is to use the properties of the beta function. But the limits of integration are from zero to $fracpi4$. We know that
$$
B(m,n) = 2int_0^pi/2sin^2m-1theta cos^2n-1theta dtheta = dfracGamma(m)Gamma(n)Gamma(m+n)
$$
Thanks for any help.
calculus integration definite-integrals special-functions
My approach is to use the properties of the beta function. But the limits of integration are from zero to $fracpi4$. We know that
$$
B(m,n) = 2int_0^pi/2sin^2m-1theta cos^2n-1theta dtheta = dfracGamma(m)Gamma(n)Gamma(m+n)
$$
Thanks for any help.
calculus integration definite-integrals special-functions
edited Jul 30 at 12:52
Harry Peter
5,45311438
5,45311438
asked Jul 25 at 14:24
MathFacts
2,9891424
2,9891424
$$sin^n+1tcos^n-1t=dfractan^n+1tsec^2tsec^2n+2t$$
â lab bhattacharjee
Jul 25 at 14:32
add a comment |Â
$$sin^n+1tcos^n-1t=dfractan^n+1tsec^2tsec^2n+2t$$
â lab bhattacharjee
Jul 25 at 14:32
$$sin^n+1tcos^n-1t=dfractan^n+1tsec^2tsec^2n+2t$$
â lab bhattacharjee
Jul 25 at 14:32
$$sin^n+1tcos^n-1t=dfractan^n+1tsec^2tsec^2n+2t$$
â lab bhattacharjee
Jul 25 at 14:32
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
6
down vote
Hint: Use substitution $theta=dfracu2$ then continue with
$$dfrac12^n+1int_0^pi/2sin^n-1u(1-cos u)du=dfracbeta(fracn2,frac12)-beta(fracn2,1)2^n+2$$
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
Hint: Use substitution $theta=dfracu2$ then continue with
$$dfrac12^n+1int_0^pi/2sin^n-1u(1-cos u)du=dfracbeta(fracn2,frac12)-beta(fracn2,1)2^n+2$$
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
add a comment |Â
up vote
6
down vote
Hint: Use substitution $theta=dfracu2$ then continue with
$$dfrac12^n+1int_0^pi/2sin^n-1u(1-cos u)du=dfracbeta(fracn2,frac12)-beta(fracn2,1)2^n+2$$
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
add a comment |Â
up vote
6
down vote
up vote
6
down vote
Hint: Use substitution $theta=dfracu2$ then continue with
$$dfrac12^n+1int_0^pi/2sin^n-1u(1-cos u)du=dfracbeta(fracn2,frac12)-beta(fracn2,1)2^n+2$$
Hint: Use substitution $theta=dfracu2$ then continue with
$$dfrac12^n+1int_0^pi/2sin^n-1u(1-cos u)du=dfracbeta(fracn2,frac12)-beta(fracn2,1)2^n+2$$
answered Jul 25 at 14:32
Nosrati
19.3k41544
19.3k41544
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
add a comment |Â
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
The so-called Weierstrass substitution works miracles with trigonometric integrals.
â Pedro Tamaroffâ¦
Jul 26 at 2:02
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862466%2fhow-to-calculate-int-0-pi-4-sinn1-theta-cosn-1-theta-d-theta%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
$$sin^n+1tcos^n-1t=dfractan^n+1tsec^2tsec^2n+2t$$
â lab bhattacharjee
Jul 25 at 14:32