How to determine if a set of five $2times2$ matrices is independent
Clash Royale CLAN TAG#URR8PPP
up vote
10
down vote
favorite
$$S=biggleft[beginmatrix1&2\2&1endmatrixright], left[beginmatrix2&1\-1&2endmatrixright], left[beginmatrix0&1\1&2endmatrixright],left[beginmatrix1&0\1&1endmatrixright],
left[beginmatrix1&4\0&3endmatrixright]bigg$$
How can I determine if a set of five $2times2$ matrices are independent?
linear-algebra matrices
add a comment |Â
up vote
10
down vote
favorite
$$S=biggleft[beginmatrix1&2\2&1endmatrixright], left[beginmatrix2&1\-1&2endmatrixright], left[beginmatrix0&1\1&2endmatrixright],left[beginmatrix1&0\1&1endmatrixright],
left[beginmatrix1&4\0&3endmatrixright]bigg$$
How can I determine if a set of five $2times2$ matrices are independent?
linear-algebra matrices
27
They can't be, View them as length-4 vectors and conclude.
â Parcly Taxel
Jul 25 at 12:59
add a comment |Â
up vote
10
down vote
favorite
up vote
10
down vote
favorite
$$S=biggleft[beginmatrix1&2\2&1endmatrixright], left[beginmatrix2&1\-1&2endmatrixright], left[beginmatrix0&1\1&2endmatrixright],left[beginmatrix1&0\1&1endmatrixright],
left[beginmatrix1&4\0&3endmatrixright]bigg$$
How can I determine if a set of five $2times2$ matrices are independent?
linear-algebra matrices
$$S=biggleft[beginmatrix1&2\2&1endmatrixright], left[beginmatrix2&1\-1&2endmatrixright], left[beginmatrix0&1\1&2endmatrixright],left[beginmatrix1&0\1&1endmatrixright],
left[beginmatrix1&4\0&3endmatrixright]bigg$$
How can I determine if a set of five $2times2$ matrices are independent?
linear-algebra matrices
edited Jul 26 at 9:05
TheSimpliFire
9,60461851
9,60461851
asked Jul 25 at 12:58
Mi_11
544
544
27
They can't be, View them as length-4 vectors and conclude.
â Parcly Taxel
Jul 25 at 12:59
add a comment |Â
27
They can't be, View them as length-4 vectors and conclude.
â Parcly Taxel
Jul 25 at 12:59
27
27
They can't be, View them as length-4 vectors and conclude.
â Parcly Taxel
Jul 25 at 12:59
They can't be, View them as length-4 vectors and conclude.
â Parcly Taxel
Jul 25 at 12:59
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
41
down vote
Since the space of all $2times2$ matrices is $4$-dimensional, every set of $5$ such matrices is linearly dependent.
3
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
add a comment |Â
up vote
6
down vote
As has been pointed out, four matrices form a basis for the $2times2$ matrices (the easiest would be
$$
left[beginmatrix1&0\0&0endmatrixright], left[beginmatrix0&1\0&0endmatrixright], left[beginmatrix0&0\1&0endmatrixright], left[beginmatrix0&0\0&1endmatrixright]
$$) so five matrices cannot be linearly dependent.
In your case the dependence is
$$
left[beginmatrix1&2\2&1endmatrixright] + left[beginmatrix2&1\-1&2endmatrixright] + left[beginmatrix0&1\1&2endmatrixright] - 2left[beginmatrix1&0\1&1endmatrixright] -
left[beginmatrix1&4\0&3endmatrixright] =
left[beginmatrix0&0\0&0endmatrixright].
$$
add a comment |Â
up vote
2
down vote
As the others have said, this set of $5$ must be linearly dependent because the dimension of the space of all $2times 2$ matrices is $4$.
More generally, how do you show that a set of vectors is linearly dependent or independent? Create a linear combination of the vectors, set it equal to $0$, and try to solve it.
$$
a_1X_1 + a_2X_2 + dotsb+ a_nX_n = 0
$$
If the only possible solution is $a_1 = a_2 = dotsb = a_n = 0$ then the set is independent. If a different solution exists then the set is dependent.
add a comment |Â
up vote
0
down vote
Stretch out the matrices to complete the rows of the following matrix
$$newcommandadjoperatornameadj
M(v)=beginbmatrix
v_1&1&2&2&1\
v_2&2&1&-1&2\
v_3&0&1&1&2\
v_4&1&0&1&1\
v_5&1&4&0&3
endbmatrixtag1
$$
Note that the top row of the adjugate of $M(v)$
$$
beginbmatrix
-14&-14&-14&28&14
endbmatrixtag2
$$
is independent of $v$ because it consists of cofactors of the elements of the left column of $M(v)$. Let $u$ be the top row of $adj M(v)$. By Laplace's Formula,
$$
det M(v)=ucdot vtag3
$$
Setting $v$ to be any of the fixed columns of $M(v)$ gives $det M(v)=0$ because of duplicate columns. Thus, $u$ is perpendicular to all the fixed columns of $M(v)$.
We can rewrite the dot product of $-frac114u$ with the fixed columns of $M(v)$ as
$$
1 overbracebeginbmatrix
1&2\2&1
endbmatrix^textrow $1$
+
1 overbracebeginbmatrix
2&1\-1&2
endbmatrix^textrow $2$
+
1 overbracebeginbmatrix
0&1\1&2
endbmatrix^textrow $3$
-2 overbracebeginbmatrix
1&0\1&1
endbmatrix^textrow $4$
-
1 overbracebeginbmatrix
1&4\0&3
endbmatrix^textrow $5$
=
beginbmatrix
0&0\0&0
endbmatrixtag4
$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
41
down vote
Since the space of all $2times2$ matrices is $4$-dimensional, every set of $5$ such matrices is linearly dependent.
3
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
add a comment |Â
up vote
41
down vote
Since the space of all $2times2$ matrices is $4$-dimensional, every set of $5$ such matrices is linearly dependent.
3
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
add a comment |Â
up vote
41
down vote
up vote
41
down vote
Since the space of all $2times2$ matrices is $4$-dimensional, every set of $5$ such matrices is linearly dependent.
Since the space of all $2times2$ matrices is $4$-dimensional, every set of $5$ such matrices is linearly dependent.
answered Jul 25 at 13:00
José Carlos Santos
113k1697176
113k1697176
3
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
add a comment |Â
3
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
3
3
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
@Mi_11 consider accepting it as valid
â Ander Biguri
Jul 25 at 15:43
add a comment |Â
up vote
6
down vote
As has been pointed out, four matrices form a basis for the $2times2$ matrices (the easiest would be
$$
left[beginmatrix1&0\0&0endmatrixright], left[beginmatrix0&1\0&0endmatrixright], left[beginmatrix0&0\1&0endmatrixright], left[beginmatrix0&0\0&1endmatrixright]
$$) so five matrices cannot be linearly dependent.
In your case the dependence is
$$
left[beginmatrix1&2\2&1endmatrixright] + left[beginmatrix2&1\-1&2endmatrixright] + left[beginmatrix0&1\1&2endmatrixright] - 2left[beginmatrix1&0\1&1endmatrixright] -
left[beginmatrix1&4\0&3endmatrixright] =
left[beginmatrix0&0\0&0endmatrixright].
$$
add a comment |Â
up vote
6
down vote
As has been pointed out, four matrices form a basis for the $2times2$ matrices (the easiest would be
$$
left[beginmatrix1&0\0&0endmatrixright], left[beginmatrix0&1\0&0endmatrixright], left[beginmatrix0&0\1&0endmatrixright], left[beginmatrix0&0\0&1endmatrixright]
$$) so five matrices cannot be linearly dependent.
In your case the dependence is
$$
left[beginmatrix1&2\2&1endmatrixright] + left[beginmatrix2&1\-1&2endmatrixright] + left[beginmatrix0&1\1&2endmatrixright] - 2left[beginmatrix1&0\1&1endmatrixright] -
left[beginmatrix1&4\0&3endmatrixright] =
left[beginmatrix0&0\0&0endmatrixright].
$$
add a comment |Â
up vote
6
down vote
up vote
6
down vote
As has been pointed out, four matrices form a basis for the $2times2$ matrices (the easiest would be
$$
left[beginmatrix1&0\0&0endmatrixright], left[beginmatrix0&1\0&0endmatrixright], left[beginmatrix0&0\1&0endmatrixright], left[beginmatrix0&0\0&1endmatrixright]
$$) so five matrices cannot be linearly dependent.
In your case the dependence is
$$
left[beginmatrix1&2\2&1endmatrixright] + left[beginmatrix2&1\-1&2endmatrixright] + left[beginmatrix0&1\1&2endmatrixright] - 2left[beginmatrix1&0\1&1endmatrixright] -
left[beginmatrix1&4\0&3endmatrixright] =
left[beginmatrix0&0\0&0endmatrixright].
$$
As has been pointed out, four matrices form a basis for the $2times2$ matrices (the easiest would be
$$
left[beginmatrix1&0\0&0endmatrixright], left[beginmatrix0&1\0&0endmatrixright], left[beginmatrix0&0\1&0endmatrixright], left[beginmatrix0&0\0&1endmatrixright]
$$) so five matrices cannot be linearly dependent.
In your case the dependence is
$$
left[beginmatrix1&2\2&1endmatrixright] + left[beginmatrix2&1\-1&2endmatrixright] + left[beginmatrix0&1\1&2endmatrixright] - 2left[beginmatrix1&0\1&1endmatrixright] -
left[beginmatrix1&4\0&3endmatrixright] =
left[beginmatrix0&0\0&0endmatrixright].
$$
answered Jul 25 at 15:11
Charles
23.3k448111
23.3k448111
add a comment |Â
add a comment |Â
up vote
2
down vote
As the others have said, this set of $5$ must be linearly dependent because the dimension of the space of all $2times 2$ matrices is $4$.
More generally, how do you show that a set of vectors is linearly dependent or independent? Create a linear combination of the vectors, set it equal to $0$, and try to solve it.
$$
a_1X_1 + a_2X_2 + dotsb+ a_nX_n = 0
$$
If the only possible solution is $a_1 = a_2 = dotsb = a_n = 0$ then the set is independent. If a different solution exists then the set is dependent.
add a comment |Â
up vote
2
down vote
As the others have said, this set of $5$ must be linearly dependent because the dimension of the space of all $2times 2$ matrices is $4$.
More generally, how do you show that a set of vectors is linearly dependent or independent? Create a linear combination of the vectors, set it equal to $0$, and try to solve it.
$$
a_1X_1 + a_2X_2 + dotsb+ a_nX_n = 0
$$
If the only possible solution is $a_1 = a_2 = dotsb = a_n = 0$ then the set is independent. If a different solution exists then the set is dependent.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
As the others have said, this set of $5$ must be linearly dependent because the dimension of the space of all $2times 2$ matrices is $4$.
More generally, how do you show that a set of vectors is linearly dependent or independent? Create a linear combination of the vectors, set it equal to $0$, and try to solve it.
$$
a_1X_1 + a_2X_2 + dotsb+ a_nX_n = 0
$$
If the only possible solution is $a_1 = a_2 = dotsb = a_n = 0$ then the set is independent. If a different solution exists then the set is dependent.
As the others have said, this set of $5$ must be linearly dependent because the dimension of the space of all $2times 2$ matrices is $4$.
More generally, how do you show that a set of vectors is linearly dependent or independent? Create a linear combination of the vectors, set it equal to $0$, and try to solve it.
$$
a_1X_1 + a_2X_2 + dotsb+ a_nX_n = 0
$$
If the only possible solution is $a_1 = a_2 = dotsb = a_n = 0$ then the set is independent. If a different solution exists then the set is dependent.
edited Jul 25 at 21:23
Foobaz John
18k41245
18k41245
answered Jul 25 at 13:56
nurdyguy
1214
1214
add a comment |Â
add a comment |Â
up vote
0
down vote
Stretch out the matrices to complete the rows of the following matrix
$$newcommandadjoperatornameadj
M(v)=beginbmatrix
v_1&1&2&2&1\
v_2&2&1&-1&2\
v_3&0&1&1&2\
v_4&1&0&1&1\
v_5&1&4&0&3
endbmatrixtag1
$$
Note that the top row of the adjugate of $M(v)$
$$
beginbmatrix
-14&-14&-14&28&14
endbmatrixtag2
$$
is independent of $v$ because it consists of cofactors of the elements of the left column of $M(v)$. Let $u$ be the top row of $adj M(v)$. By Laplace's Formula,
$$
det M(v)=ucdot vtag3
$$
Setting $v$ to be any of the fixed columns of $M(v)$ gives $det M(v)=0$ because of duplicate columns. Thus, $u$ is perpendicular to all the fixed columns of $M(v)$.
We can rewrite the dot product of $-frac114u$ with the fixed columns of $M(v)$ as
$$
1 overbracebeginbmatrix
1&2\2&1
endbmatrix^textrow $1$
+
1 overbracebeginbmatrix
2&1\-1&2
endbmatrix^textrow $2$
+
1 overbracebeginbmatrix
0&1\1&2
endbmatrix^textrow $3$
-2 overbracebeginbmatrix
1&0\1&1
endbmatrix^textrow $4$
-
1 overbracebeginbmatrix
1&4\0&3
endbmatrix^textrow $5$
=
beginbmatrix
0&0\0&0
endbmatrixtag4
$$
add a comment |Â
up vote
0
down vote
Stretch out the matrices to complete the rows of the following matrix
$$newcommandadjoperatornameadj
M(v)=beginbmatrix
v_1&1&2&2&1\
v_2&2&1&-1&2\
v_3&0&1&1&2\
v_4&1&0&1&1\
v_5&1&4&0&3
endbmatrixtag1
$$
Note that the top row of the adjugate of $M(v)$
$$
beginbmatrix
-14&-14&-14&28&14
endbmatrixtag2
$$
is independent of $v$ because it consists of cofactors of the elements of the left column of $M(v)$. Let $u$ be the top row of $adj M(v)$. By Laplace's Formula,
$$
det M(v)=ucdot vtag3
$$
Setting $v$ to be any of the fixed columns of $M(v)$ gives $det M(v)=0$ because of duplicate columns. Thus, $u$ is perpendicular to all the fixed columns of $M(v)$.
We can rewrite the dot product of $-frac114u$ with the fixed columns of $M(v)$ as
$$
1 overbracebeginbmatrix
1&2\2&1
endbmatrix^textrow $1$
+
1 overbracebeginbmatrix
2&1\-1&2
endbmatrix^textrow $2$
+
1 overbracebeginbmatrix
0&1\1&2
endbmatrix^textrow $3$
-2 overbracebeginbmatrix
1&0\1&1
endbmatrix^textrow $4$
-
1 overbracebeginbmatrix
1&4\0&3
endbmatrix^textrow $5$
=
beginbmatrix
0&0\0&0
endbmatrixtag4
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Stretch out the matrices to complete the rows of the following matrix
$$newcommandadjoperatornameadj
M(v)=beginbmatrix
v_1&1&2&2&1\
v_2&2&1&-1&2\
v_3&0&1&1&2\
v_4&1&0&1&1\
v_5&1&4&0&3
endbmatrixtag1
$$
Note that the top row of the adjugate of $M(v)$
$$
beginbmatrix
-14&-14&-14&28&14
endbmatrixtag2
$$
is independent of $v$ because it consists of cofactors of the elements of the left column of $M(v)$. Let $u$ be the top row of $adj M(v)$. By Laplace's Formula,
$$
det M(v)=ucdot vtag3
$$
Setting $v$ to be any of the fixed columns of $M(v)$ gives $det M(v)=0$ because of duplicate columns. Thus, $u$ is perpendicular to all the fixed columns of $M(v)$.
We can rewrite the dot product of $-frac114u$ with the fixed columns of $M(v)$ as
$$
1 overbracebeginbmatrix
1&2\2&1
endbmatrix^textrow $1$
+
1 overbracebeginbmatrix
2&1\-1&2
endbmatrix^textrow $2$
+
1 overbracebeginbmatrix
0&1\1&2
endbmatrix^textrow $3$
-2 overbracebeginbmatrix
1&0\1&1
endbmatrix^textrow $4$
-
1 overbracebeginbmatrix
1&4\0&3
endbmatrix^textrow $5$
=
beginbmatrix
0&0\0&0
endbmatrixtag4
$$
Stretch out the matrices to complete the rows of the following matrix
$$newcommandadjoperatornameadj
M(v)=beginbmatrix
v_1&1&2&2&1\
v_2&2&1&-1&2\
v_3&0&1&1&2\
v_4&1&0&1&1\
v_5&1&4&0&3
endbmatrixtag1
$$
Note that the top row of the adjugate of $M(v)$
$$
beginbmatrix
-14&-14&-14&28&14
endbmatrixtag2
$$
is independent of $v$ because it consists of cofactors of the elements of the left column of $M(v)$. Let $u$ be the top row of $adj M(v)$. By Laplace's Formula,
$$
det M(v)=ucdot vtag3
$$
Setting $v$ to be any of the fixed columns of $M(v)$ gives $det M(v)=0$ because of duplicate columns. Thus, $u$ is perpendicular to all the fixed columns of $M(v)$.
We can rewrite the dot product of $-frac114u$ with the fixed columns of $M(v)$ as
$$
1 overbracebeginbmatrix
1&2\2&1
endbmatrix^textrow $1$
+
1 overbracebeginbmatrix
2&1\-1&2
endbmatrix^textrow $2$
+
1 overbracebeginbmatrix
0&1\1&2
endbmatrix^textrow $3$
-2 overbracebeginbmatrix
1&0\1&1
endbmatrix^textrow $4$
-
1 overbracebeginbmatrix
1&4\0&3
endbmatrix^textrow $5$
=
beginbmatrix
0&0\0&0
endbmatrixtag4
$$
edited Jul 26 at 20:59
answered Jul 26 at 20:50
robjohnâ¦
258k26297612
258k26297612
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862389%2fhow-to-determine-if-a-set-of-five-2-times2-matrices-is-independent%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
27
They can't be, View them as length-4 vectors and conclude.
â Parcly Taxel
Jul 25 at 12:59