Fresnel integrals are not Lebesgue integrable

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












How does one prove that the Fresnel integrals
$$
S(x) = int_0^x ! sin(t^2) , mathrmdt, qquad C(x) = int_0^x ! cos(t^2) , mathrmdt
$$
do not belong to $L^1(mathbbR)$?







share|cite|improve this question















  • 1




    Do you mean to show that $$int^infty_0lvert sin(t^2) rvert dt ,,,,,, text and ,,, int^infty_0 lvert cos(t^2) rvert dt$$ diverge or that $$int_-infty^infty lvert S(x) rvert dx ,,,,, text and ,,,,, int^infty_-infty lvert C(x) rvert dx$$ diverge?
    – User8128
    Jul 25 at 13:36











  • The latter. I would like to show that $S, C notin L^1(mathbbR)$.
    – sleepingrabbit
    Jul 25 at 13:40














up vote
0
down vote

favorite












How does one prove that the Fresnel integrals
$$
S(x) = int_0^x ! sin(t^2) , mathrmdt, qquad C(x) = int_0^x ! cos(t^2) , mathrmdt
$$
do not belong to $L^1(mathbbR)$?







share|cite|improve this question















  • 1




    Do you mean to show that $$int^infty_0lvert sin(t^2) rvert dt ,,,,,, text and ,,, int^infty_0 lvert cos(t^2) rvert dt$$ diverge or that $$int_-infty^infty lvert S(x) rvert dx ,,,,, text and ,,,,, int^infty_-infty lvert C(x) rvert dx$$ diverge?
    – User8128
    Jul 25 at 13:36











  • The latter. I would like to show that $S, C notin L^1(mathbbR)$.
    – sleepingrabbit
    Jul 25 at 13:40












up vote
0
down vote

favorite









up vote
0
down vote

favorite











How does one prove that the Fresnel integrals
$$
S(x) = int_0^x ! sin(t^2) , mathrmdt, qquad C(x) = int_0^x ! cos(t^2) , mathrmdt
$$
do not belong to $L^1(mathbbR)$?







share|cite|improve this question











How does one prove that the Fresnel integrals
$$
S(x) = int_0^x ! sin(t^2) , mathrmdt, qquad C(x) = int_0^x ! cos(t^2) , mathrmdt
$$
do not belong to $L^1(mathbbR)$?









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 25 at 13:16









sleepingrabbit

1197




1197







  • 1




    Do you mean to show that $$int^infty_0lvert sin(t^2) rvert dt ,,,,,, text and ,,, int^infty_0 lvert cos(t^2) rvert dt$$ diverge or that $$int_-infty^infty lvert S(x) rvert dx ,,,,, text and ,,,,, int^infty_-infty lvert C(x) rvert dx$$ diverge?
    – User8128
    Jul 25 at 13:36











  • The latter. I would like to show that $S, C notin L^1(mathbbR)$.
    – sleepingrabbit
    Jul 25 at 13:40












  • 1




    Do you mean to show that $$int^infty_0lvert sin(t^2) rvert dt ,,,,,, text and ,,, int^infty_0 lvert cos(t^2) rvert dt$$ diverge or that $$int_-infty^infty lvert S(x) rvert dx ,,,,, text and ,,,,, int^infty_-infty lvert C(x) rvert dx$$ diverge?
    – User8128
    Jul 25 at 13:36











  • The latter. I would like to show that $S, C notin L^1(mathbbR)$.
    – sleepingrabbit
    Jul 25 at 13:40







1




1




Do you mean to show that $$int^infty_0lvert sin(t^2) rvert dt ,,,,,, text and ,,, int^infty_0 lvert cos(t^2) rvert dt$$ diverge or that $$int_-infty^infty lvert S(x) rvert dx ,,,,, text and ,,,,, int^infty_-infty lvert C(x) rvert dx$$ diverge?
– User8128
Jul 25 at 13:36





Do you mean to show that $$int^infty_0lvert sin(t^2) rvert dt ,,,,,, text and ,,, int^infty_0 lvert cos(t^2) rvert dt$$ diverge or that $$int_-infty^infty lvert S(x) rvert dx ,,,,, text and ,,,,, int^infty_-infty lvert C(x) rvert dx$$ diverge?
– User8128
Jul 25 at 13:36













The latter. I would like to show that $S, C notin L^1(mathbbR)$.
– sleepingrabbit
Jul 25 at 13:40




The latter. I would like to show that $S, C notin L^1(mathbbR)$.
– sleepingrabbit
Jul 25 at 13:40










1 Answer
1






active

oldest

votes

















up vote
4
down vote



accepted










Since $lim_lvert x rvert to infty lvert S(x) rvert = sqrtpi/8$, we can find $M in mathbb R$ such that for $lvert x rvert > M$, we have $$lvert S(x) rvert ge sqrtpi/16.$$ But then $$int^infty_-infty lvert S(x) rvert dx ge int^M_-M lvert S(x) rvert dx + int^infty_M sqrtpi/16 ,,dx + int^-M_-infty sqrtpi/16,, dx = infty$$ and similarly for $C(x)$.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862399%2ffresnel-integrals-are-not-lebesgue-integrable%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote



    accepted










    Since $lim_lvert x rvert to infty lvert S(x) rvert = sqrtpi/8$, we can find $M in mathbb R$ such that for $lvert x rvert > M$, we have $$lvert S(x) rvert ge sqrtpi/16.$$ But then $$int^infty_-infty lvert S(x) rvert dx ge int^M_-M lvert S(x) rvert dx + int^infty_M sqrtpi/16 ,,dx + int^-M_-infty sqrtpi/16,, dx = infty$$ and similarly for $C(x)$.






    share|cite|improve this answer

























      up vote
      4
      down vote



      accepted










      Since $lim_lvert x rvert to infty lvert S(x) rvert = sqrtpi/8$, we can find $M in mathbb R$ such that for $lvert x rvert > M$, we have $$lvert S(x) rvert ge sqrtpi/16.$$ But then $$int^infty_-infty lvert S(x) rvert dx ge int^M_-M lvert S(x) rvert dx + int^infty_M sqrtpi/16 ,,dx + int^-M_-infty sqrtpi/16,, dx = infty$$ and similarly for $C(x)$.






      share|cite|improve this answer























        up vote
        4
        down vote



        accepted







        up vote
        4
        down vote



        accepted






        Since $lim_lvert x rvert to infty lvert S(x) rvert = sqrtpi/8$, we can find $M in mathbb R$ such that for $lvert x rvert > M$, we have $$lvert S(x) rvert ge sqrtpi/16.$$ But then $$int^infty_-infty lvert S(x) rvert dx ge int^M_-M lvert S(x) rvert dx + int^infty_M sqrtpi/16 ,,dx + int^-M_-infty sqrtpi/16,, dx = infty$$ and similarly for $C(x)$.






        share|cite|improve this answer













        Since $lim_lvert x rvert to infty lvert S(x) rvert = sqrtpi/8$, we can find $M in mathbb R$ such that for $lvert x rvert > M$, we have $$lvert S(x) rvert ge sqrtpi/16.$$ But then $$int^infty_-infty lvert S(x) rvert dx ge int^M_-M lvert S(x) rvert dx + int^infty_M sqrtpi/16 ,,dx + int^-M_-infty sqrtpi/16,, dx = infty$$ and similarly for $C(x)$.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 25 at 13:44









        User8128

        10.2k1522




        10.2k1522






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862399%2ffresnel-integrals-are-not-lebesgue-integrable%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?