compute Derivative exterior of 1-form
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let
$X=xfracpartial partial x+2xyfracpartial partial y$
$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$
Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$
I have this
$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$
therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$
$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$
therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)
Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$
therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $
then I have the following
$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$
but $dw(X,Y)=-xy $
Is it a numerical error or something conceptual?
Thanks
differential-geometry
add a comment |Â
up vote
0
down vote
favorite
Let
$X=xfracpartial partial x+2xyfracpartial partial y$
$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$
Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$
I have this
$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$
therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$
$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$
therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)
Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$
therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $
then I have the following
$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$
but $dw(X,Y)=-xy $
Is it a numerical error or something conceptual?
Thanks
differential-geometry
I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47
I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let
$X=xfracpartial partial x+2xyfracpartial partial y$
$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$
Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$
I have this
$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$
therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$
$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$
therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)
Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$
therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $
then I have the following
$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$
but $dw(X,Y)=-xy $
Is it a numerical error or something conceptual?
Thanks
differential-geometry
Let
$X=xfracpartial partial x+2xyfracpartial partial y$
$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$
Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$
I have this
$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$
therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$
$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$
therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)
Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$
therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $
then I have the following
$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$
but $dw(X,Y)=-xy $
Is it a numerical error or something conceptual?
Thanks
differential-geometry
asked Jul 23 at 17:17
eraldcoil
386
386
I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47
I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53
add a comment |Â
I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47
I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53
I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47
I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47
I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53
I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.
add a comment |Â
up vote
0
down vote
I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.
I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.
answered Jul 23 at 19:53


Semsem
6,42031433
6,42031433
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860596%2fcompute-derivative-exterior-of-1-form%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47
I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53