compute Derivative exterior of 1-form

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let
$X=xfracpartial partial x+2xyfracpartial partial y$



$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$



Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$



I have this



$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$



therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$



$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$



therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)



Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$



therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $



then I have the following



$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$



but $dw(X,Y)=-xy $



Is it a numerical error or something conceptual?



Thanks







share|cite|improve this question



















  • I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
    – md2perpe
    Jul 23 at 19:47










  • I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
    – md2perpe
    Jul 23 at 19:53














up vote
0
down vote

favorite












Let
$X=xfracpartial partial x+2xyfracpartial partial y$



$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$



Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$



I have this



$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$



therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$



$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$



therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)



Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$



therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $



then I have the following



$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$



but $dw(X,Y)=-xy $



Is it a numerical error or something conceptual?



Thanks







share|cite|improve this question



















  • I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
    – md2perpe
    Jul 23 at 19:47










  • I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
    – md2perpe
    Jul 23 at 19:53












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let
$X=xfracpartial partial x+2xyfracpartial partial y$



$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$



Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$



I have this



$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$



therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$



$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$



therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)



Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$



therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $



then I have the following



$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$



but $dw(X,Y)=-xy $



Is it a numerical error or something conceptual?



Thanks







share|cite|improve this question











Let
$X=xfracpartial partial x+2xyfracpartial partial y$



$Y=yfracpartial partial y$ vector fields on $mathbbR^2$ with 1-form $w=(x^2+2y)dx+(x+y^2)dy$



Show that $dw(X,Y)=X(w(Y))-Y(w(X))-w([X,Y])$



I have this



$X(w(Y))=X((x^2+2y)dx+(x+y^2)dy)Y=
X[(x^2+2y)Y(x)+(x+y^2)Y(y)]
=X[(x+y^2)Y(y)]=X[(x+y^2)y]=X(x)y+xX(y)+6xy^3$



therefore $X(w(Y))=X(x)y+xX(y)+6xy^3$



$Y(w(X))=Y((x^2+2y)dx+(x+y^2)dy)X=Y[(x^2+2y)X(x)+(x+y^2)X(y)]=
Y[(x^2+2y)x+(x+y^2)2xy]=y2x+(x^2+2y)Y(x)+y2y2xy+(x+y^2)y2x=2xy+6xy^3+2x^2y$



therefore $Y(w(X))=2xy+6xy^3+2x^2y$ $quad$ ( $Y(x)=0$)



Now
$w([X,Y])=((x^2+2y)dx+(x+y^2)dy)(XY-YX)=
(x^2+2y)dx(XY)+(x+y^2)dy(XY)-(x^2+2y)dx(YX)-(x+y^2)dy(YX)=
(x^2+2y)XY(x)+(x+y^2)XY(y)-(x^2+2y)YX(x)-(x+y^2)YX(y)=
(x^2+2y)XY(x)+(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)Y(2xy)=(x+y^2)X(y)-(x^2+2y)Y(x)-(x+y^2)y2x=(x+y^2)X(y)-2x^2y-2x^2y^3$



therefore $w([X,Y])=(x+y^2)X(y)-2x^2y-2x^2y^3 $



then I have the following



$X(w(Y))-Y(w(X))-w([X,Y])=-xy-4x^2y-2xy^3-2x^2y^3$



but $dw(X,Y)=-xy $



Is it a numerical error or something conceptual?



Thanks









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 23 at 17:17









eraldcoil

386




386











  • I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
    – md2perpe
    Jul 23 at 19:47










  • I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
    – md2perpe
    Jul 23 at 19:53
















  • I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
    – md2perpe
    Jul 23 at 19:47










  • I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
    – md2perpe
    Jul 23 at 19:53















I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47




I get the same as you on $Y(w(X))$. What do you get after expanding $X(x)$ and $X(y)$ in $X(w(Y))=X(x)y+xX(y)+6xy^3$?
– md2perpe
Jul 23 at 19:47












I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53




I get $XY = YX$, so $[X, Y] = 0$ and $w([X, Y]) = 0.$
– md2perpe
Jul 23 at 19:53










1 Answer
1






active

oldest

votes

















up vote
0
down vote













I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860596%2fcompute-derivative-exterior-of-1-form%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.






    share|cite|improve this answer

























      up vote
      0
      down vote













      I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.






        share|cite|improve this answer













        I think the first and second terms are correct whereas the third is incorrect. The Lie bracket should be zero.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 23 at 19:53









        Semsem

        6,42031433




        6,42031433






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860596%2fcompute-derivative-exterior-of-1-form%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?