Derivation of Fibonacci sequence by difference equation/Z transform

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












I'm trying to derive the Fibonacci sequence. I have the following problem:



$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$



With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:



$$N(t+2) = N(t+1)+ N(t) $$



We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:



$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$



This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:



$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$



Thanks!







share|cite|improve this question





















  • Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
    – Rumpelstiltskin
    Aug 3 at 15:14











  • The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
    – Felipe
    Aug 3 at 15:42










  • $N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
    – Rumpelstiltskin
    Aug 3 at 15:45











  • Thanks, your answer clarified my problem!
    – Felipe
    Aug 3 at 17:15










  • math.stackexchange.com/questions/279868/…
    – lab bhattacharjee
    Aug 4 at 7:24














up vote
0
down vote

favorite
1












I'm trying to derive the Fibonacci sequence. I have the following problem:



$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$



With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:



$$N(t+2) = N(t+1)+ N(t) $$



We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:



$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$



This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:



$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$



Thanks!







share|cite|improve this question





















  • Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
    – Rumpelstiltskin
    Aug 3 at 15:14











  • The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
    – Felipe
    Aug 3 at 15:42










  • $N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
    – Rumpelstiltskin
    Aug 3 at 15:45











  • Thanks, your answer clarified my problem!
    – Felipe
    Aug 3 at 17:15










  • math.stackexchange.com/questions/279868/…
    – lab bhattacharjee
    Aug 4 at 7:24












up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





I'm trying to derive the Fibonacci sequence. I have the following problem:



$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$



With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:



$$N(t+2) = N(t+1)+ N(t) $$



We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:



$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$



This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:



$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$



Thanks!







share|cite|improve this question













I'm trying to derive the Fibonacci sequence. I have the following problem:



$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$



With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:



$$N(t+2) = N(t+1)+ N(t) $$



We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:



$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$



This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:



$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$



Thanks!









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 3 at 15:43
























asked Aug 3 at 14:56









Felipe

557




557











  • Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
    – Rumpelstiltskin
    Aug 3 at 15:14











  • The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
    – Felipe
    Aug 3 at 15:42










  • $N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
    – Rumpelstiltskin
    Aug 3 at 15:45











  • Thanks, your answer clarified my problem!
    – Felipe
    Aug 3 at 17:15










  • math.stackexchange.com/questions/279868/…
    – lab bhattacharjee
    Aug 4 at 7:24
















  • Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
    – Rumpelstiltskin
    Aug 3 at 15:14











  • The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
    – Felipe
    Aug 3 at 15:42










  • $N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
    – Rumpelstiltskin
    Aug 3 at 15:45











  • Thanks, your answer clarified my problem!
    – Felipe
    Aug 3 at 17:15










  • math.stackexchange.com/questions/279868/…
    – lab bhattacharjee
    Aug 4 at 7:24















Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14





Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14













The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42




The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42












$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45





$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45













Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15




Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15












math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24




math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24










1 Answer
1






active

oldest

votes

















up vote
1
down vote













Let $x_n=N(n)$. Then:
$$
forall zinOmegasubsetmathbbC\
sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
$$.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871167%2fderivation-of-fibonacci-sequence-by-difference-equation-z-transform%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Let $x_n=N(n)$. Then:
    $$
    forall zinOmegasubsetmathbbC\
    sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
    iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
    iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
    iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
    iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
    $$.






    share|cite|improve this answer

























      up vote
      1
      down vote













      Let $x_n=N(n)$. Then:
      $$
      forall zinOmegasubsetmathbbC\
      sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
      iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
      iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
      iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
      iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
      $$.






      share|cite|improve this answer























        up vote
        1
        down vote










        up vote
        1
        down vote









        Let $x_n=N(n)$. Then:
        $$
        forall zinOmegasubsetmathbbC\
        sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
        iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
        iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
        iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
        iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
        $$.






        share|cite|improve this answer













        Let $x_n=N(n)$. Then:
        $$
        forall zinOmegasubsetmathbbC\
        sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
        iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
        iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
        iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
        iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
        $$.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Aug 3 at 16:01









        Quantic_Solver

        214




        214






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871167%2fderivation-of-fibonacci-sequence-by-difference-equation-z-transform%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?