Derivation of Fibonacci sequence by difference equation/Z transform
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I'm trying to derive the Fibonacci sequence. I have the following problem:
$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$
With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:
$$N(t+2) = N(t+1)+ N(t) $$
We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:
$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$
This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:
$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$
Thanks!
fibonacci-numbers z-transform
add a comment |Â
up vote
0
down vote
favorite
I'm trying to derive the Fibonacci sequence. I have the following problem:
$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$
With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:
$$N(t+2) = N(t+1)+ N(t) $$
We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:
$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$
This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:
$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$
Thanks!
fibonacci-numbers z-transform
Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14
The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42
$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45
Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15
math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to derive the Fibonacci sequence. I have the following problem:
$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$
With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:
$$N(t+2) = N(t+1)+ N(t) $$
We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:
$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$
This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:
$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$
Thanks!
fibonacci-numbers z-transform
I'm trying to derive the Fibonacci sequence. I have the following problem:
$$N(t) = N(t-1)+ N(t-2) quad quad quad quad (I)$$
With initial conditions $N(1) = 2$ and $N(2) = 3$. Using:
$$N(t+2) = N(t+1)+ N(t) $$
We get $N(0) = 1$, $N(-1)=1$ and $N(-2)=0$. Taking the Z transform on (I) we have:
$$ N_Z(z) = z^-1N_Z(z)+N(-1) + z^-2N_Z(z) + z^-1N(-1)+N(-2)$$
$$therefore N_Z(z) = fracz^-1+11-z^-1-z^-2 $$
This give me the wrong formula. I should get the binet formula when I take the inverse Z transform. Z trasform of N(t) should look like:
$$therefore N_Z(z) = fracz^-11-z^-1-z^-2 $$
Thanks!
fibonacci-numbers z-transform
edited Aug 3 at 15:43
asked Aug 3 at 14:56
Felipe
557
557
Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14
The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42
$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45
Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15
math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24
add a comment |Â
Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14
The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42
$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45
Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15
math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24
Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14
Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14
The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42
The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42
$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45
$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45
Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15
Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15
math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24
math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Let $x_n=N(n)$. Then:
$$
forall zinOmegasubsetmathbbC\
sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
$$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Let $x_n=N(n)$. Then:
$$
forall zinOmegasubsetmathbbC\
sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
$$.
add a comment |Â
up vote
1
down vote
Let $x_n=N(n)$. Then:
$$
forall zinOmegasubsetmathbbC\
sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
$$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let $x_n=N(n)$. Then:
$$
forall zinOmegasubsetmathbbC\
sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
$$.
Let $x_n=N(n)$. Then:
$$
forall zinOmegasubsetmathbbC\
sumlimits_n=-2^infty (x_n+2-x_n+1-x_n)z^-(n+2)=0\
iff sumlimits_n=-2^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff -x_-1z^-1+sumlimits_n=-3^infty x_n+2z^-(n+2)-z^-1sumlimits_n=-2^infty x_n+1z^-(n+1)-z^-2sumlimits_n=-2^infty x_nz^-n=0 \
iff (1-z^-1-z^-2)sumlimits_n=-1^infty x_nz^-n=z^-1 \
iff sumlimits_n=-1^infty x_nz^-n=fracz^-11-z^-1-z^-2
$$.
answered Aug 3 at 16:01
Quantic_Solver
214
214
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871167%2fderivation-of-fibonacci-sequence-by-difference-equation-z-transform%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Im not familiar with z-transform, but maybe it's because it's not an actual Fibonacci sequence?
– Rumpelstiltskin
Aug 3 at 15:14
The fibonacci sequence isnt $N(t) = N(t-1)+N(t-2)$?
– Felipe
Aug 3 at 15:42
$N(1)=1$, $N(2)=1$ would be Fibonacci, this one is "shifted" Fibonacci.
– Rumpelstiltskin
Aug 3 at 15:45
Thanks, your answer clarified my problem!
– Felipe
Aug 3 at 17:15
math.stackexchange.com/questions/279868/…
– lab bhattacharjee
Aug 4 at 7:24