Evaluating $frac1^22^1+frac3^22^2+frac5^22^3+cdots$ using sigma notation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
3












This question can be solved by method of difference
but I want to solve solve it using sigma notation:



$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$



I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes



$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.



Answer = $17$







share|cite|improve this question





















  • everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
    – jame samajoe
    Jul 27 at 18:12










  • You... forgot the factor $1/2^r$ in your 3 resulting summations.
    – Clement C.
    Jul 27 at 18:32











  • @ClementC. can u explain what u want to say
    – jame samajoe
    Jul 27 at 18:35










  • You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
    – Clement C.
    Jul 27 at 18:36






  • 1




    @jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
    – callculus
    Jul 27 at 18:54















up vote
3
down vote

favorite
3












This question can be solved by method of difference
but I want to solve solve it using sigma notation:



$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$



I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes



$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.



Answer = $17$







share|cite|improve this question





















  • everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
    – jame samajoe
    Jul 27 at 18:12










  • You... forgot the factor $1/2^r$ in your 3 resulting summations.
    – Clement C.
    Jul 27 at 18:32











  • @ClementC. can u explain what u want to say
    – jame samajoe
    Jul 27 at 18:35










  • You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
    – Clement C.
    Jul 27 at 18:36






  • 1




    @jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
    – callculus
    Jul 27 at 18:54













up vote
3
down vote

favorite
3









up vote
3
down vote

favorite
3






3





This question can be solved by method of difference
but I want to solve solve it using sigma notation:



$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$



I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes



$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.



Answer = $17$







share|cite|improve this question













This question can be solved by method of difference
but I want to solve solve it using sigma notation:



$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$



I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes



$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.



Answer = $17$









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 27 at 18:49









Blue

43.6k868141




43.6k868141









asked Jul 27 at 18:03









jame samajoe

288




288











  • everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
    – jame samajoe
    Jul 27 at 18:12










  • You... forgot the factor $1/2^r$ in your 3 resulting summations.
    – Clement C.
    Jul 27 at 18:32











  • @ClementC. can u explain what u want to say
    – jame samajoe
    Jul 27 at 18:35










  • You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
    – Clement C.
    Jul 27 at 18:36






  • 1




    @jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
    – callculus
    Jul 27 at 18:54

















  • everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
    – jame samajoe
    Jul 27 at 18:12










  • You... forgot the factor $1/2^r$ in your 3 resulting summations.
    – Clement C.
    Jul 27 at 18:32











  • @ClementC. can u explain what u want to say
    – jame samajoe
    Jul 27 at 18:35










  • You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
    – Clement C.
    Jul 27 at 18:36






  • 1




    @jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
    – callculus
    Jul 27 at 18:54
















everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12




everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12












You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32





You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32













@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35




@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35












You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36




You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36




1




1




@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54





@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54











4 Answers
4






active

oldest

votes

















up vote
5
down vote



accepted










A simple answer to the question



Note that
beginmultline*
Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
endmultline*
since each of the series on the right hand side are convergent.
First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
As for $I_1$,
beginalign*
I_1 & =frac12^1+frac22^2+frac32^3+cdots\
frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
endalign*
and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
As for $I_2$, note that
beginalign*
I_2 & =frac12^1+frac42^2+frac92^3+cdots\
frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
endalign*
In other words,
$$
frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
$$
Putting this all together,
$$
S=4cdot6-4cdot2+1=24-8+1=17.
$$




Generalizing the above



We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
$$
boxedI_m=sum_ngeq1n^mc^-n
$$
Note that $I_0=(c-1)^-1$. If $m>0$, then
beginmultline*
left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
=sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
=sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
=sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
=sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
endmultline*
This yields the recurrence
$$
boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
$$




Relationship to polylogarithm



Note that $I_m$ is related to the polylogarithm:
$$
operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
$$
Expressing our identity in terms of the polylogarithm,
$$
boxed<1
$$
There are various other expressions for $operatornameLi_-m(z)$
where $m$ is positive and $z$ is complex.






share|cite|improve this answer






























    up vote
    2
    down vote













    Hint:



    For $a<1$,



    $$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$



    Then



    $$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$



    $$S_1(k)=S_0(k)+aS_1(k)$$ and



    $$S_1(k)=frac a(1-a)^2.$$



    Next,



    $$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$



    $$S_2(k)=2S_1(k)+aS_2(k)$$ and



    $$S_2(k)=frac2a(1-a)^3.$$



    You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.



    Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.



    $$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$






    share|cite|improve this answer






























      up vote
      2
      down vote













      The general term is $frac(2k-1)^22^k$. Using that, we get
      $$
      beginalign
      sum_k=1^inftyfrac(2k-1)^22^k
      &=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
      &=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
      &=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
      &=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
      &=17tag5
      endalign
      $$
      Explanation:

      $(1)$: $(2k-1)^2=4k(k-1)+1$

      $(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$

      $(3)$: convert to negative binomial coefficients

      $(4)$: Generalized Binomial Theorem

      $(5)$: evaluate






      share|cite|improve this answer






























        up vote
        1
        down vote













        Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
        $$n^2=n(n-1)+n$$ which makes
        $$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$



        Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.






        share|cite|improve this answer





















          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864643%2fevaluating-frac1221-frac3222-frac5223-cdots-using-sigma%23new-answer', 'question_page');

          );

          Post as a guest






























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          5
          down vote



          accepted










          A simple answer to the question



          Note that
          beginmultline*
          Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
          endmultline*
          since each of the series on the right hand side are convergent.
          First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
          As for $I_1$,
          beginalign*
          I_1 & =frac12^1+frac22^2+frac32^3+cdots\
          frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
          frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
          endalign*
          and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
          As for $I_2$, note that
          beginalign*
          I_2 & =frac12^1+frac42^2+frac92^3+cdots\
          frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
          frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
          endalign*
          In other words,
          $$
          frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
          $$
          Putting this all together,
          $$
          S=4cdot6-4cdot2+1=24-8+1=17.
          $$




          Generalizing the above



          We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
          $$
          boxedI_m=sum_ngeq1n^mc^-n
          $$
          Note that $I_0=(c-1)^-1$. If $m>0$, then
          beginmultline*
          left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
          =sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
          =sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
          =sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
          =sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
          endmultline*
          This yields the recurrence
          $$
          boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
          $$




          Relationship to polylogarithm



          Note that $I_m$ is related to the polylogarithm:
          $$
          operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
          $$
          Expressing our identity in terms of the polylogarithm,
          $$
          boxed<1
          $$
          There are various other expressions for $operatornameLi_-m(z)$
          where $m$ is positive and $z$ is complex.






          share|cite|improve this answer



























            up vote
            5
            down vote



            accepted










            A simple answer to the question



            Note that
            beginmultline*
            Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
            endmultline*
            since each of the series on the right hand side are convergent.
            First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
            As for $I_1$,
            beginalign*
            I_1 & =frac12^1+frac22^2+frac32^3+cdots\
            frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
            frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
            endalign*
            and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
            As for $I_2$, note that
            beginalign*
            I_2 & =frac12^1+frac42^2+frac92^3+cdots\
            frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
            frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
            endalign*
            In other words,
            $$
            frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
            $$
            Putting this all together,
            $$
            S=4cdot6-4cdot2+1=24-8+1=17.
            $$




            Generalizing the above



            We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
            $$
            boxedI_m=sum_ngeq1n^mc^-n
            $$
            Note that $I_0=(c-1)^-1$. If $m>0$, then
            beginmultline*
            left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
            =sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
            =sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
            =sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
            =sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
            endmultline*
            This yields the recurrence
            $$
            boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
            $$




            Relationship to polylogarithm



            Note that $I_m$ is related to the polylogarithm:
            $$
            operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
            $$
            Expressing our identity in terms of the polylogarithm,
            $$
            boxed<1
            $$
            There are various other expressions for $operatornameLi_-m(z)$
            where $m$ is positive and $z$ is complex.






            share|cite|improve this answer

























              up vote
              5
              down vote



              accepted







              up vote
              5
              down vote



              accepted






              A simple answer to the question



              Note that
              beginmultline*
              Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
              endmultline*
              since each of the series on the right hand side are convergent.
              First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
              As for $I_1$,
              beginalign*
              I_1 & =frac12^1+frac22^2+frac32^3+cdots\
              frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
              frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
              endalign*
              and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
              As for $I_2$, note that
              beginalign*
              I_2 & =frac12^1+frac42^2+frac92^3+cdots\
              frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
              frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
              endalign*
              In other words,
              $$
              frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
              $$
              Putting this all together,
              $$
              S=4cdot6-4cdot2+1=24-8+1=17.
              $$




              Generalizing the above



              We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
              $$
              boxedI_m=sum_ngeq1n^mc^-n
              $$
              Note that $I_0=(c-1)^-1$. If $m>0$, then
              beginmultline*
              left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
              =sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
              =sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
              =sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
              =sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
              endmultline*
              This yields the recurrence
              $$
              boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
              $$




              Relationship to polylogarithm



              Note that $I_m$ is related to the polylogarithm:
              $$
              operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
              $$
              Expressing our identity in terms of the polylogarithm,
              $$
              boxed<1
              $$
              There are various other expressions for $operatornameLi_-m(z)$
              where $m$ is positive and $z$ is complex.






              share|cite|improve this answer















              A simple answer to the question



              Note that
              beginmultline*
              Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
              endmultline*
              since each of the series on the right hand side are convergent.
              First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
              As for $I_1$,
              beginalign*
              I_1 & =frac12^1+frac22^2+frac32^3+cdots\
              frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
              frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
              endalign*
              and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
              As for $I_2$, note that
              beginalign*
              I_2 & =frac12^1+frac42^2+frac92^3+cdots\
              frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
              frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
              endalign*
              In other words,
              $$
              frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
              $$
              Putting this all together,
              $$
              S=4cdot6-4cdot2+1=24-8+1=17.
              $$




              Generalizing the above



              We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
              $$
              boxedI_m=sum_ngeq1n^mc^-n
              $$
              Note that $I_0=(c-1)^-1$. If $m>0$, then
              beginmultline*
              left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
              =sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
              =sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
              =sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
              =sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
              endmultline*
              This yields the recurrence
              $$
              boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
              $$




              Relationship to polylogarithm



              Note that $I_m$ is related to the polylogarithm:
              $$
              operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
              $$
              Expressing our identity in terms of the polylogarithm,
              $$
              boxed<1
              $$
              There are various other expressions for $operatornameLi_-m(z)$
              where $m$ is positive and $z$ is complex.







              share|cite|improve this answer















              share|cite|improve this answer



              share|cite|improve this answer








              edited Jul 27 at 22:14


























              answered Jul 27 at 18:44









              parsiad

              15.9k32253




              15.9k32253




















                  up vote
                  2
                  down vote













                  Hint:



                  For $a<1$,



                  $$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$



                  Then



                  $$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$



                  $$S_1(k)=S_0(k)+aS_1(k)$$ and



                  $$S_1(k)=frac a(1-a)^2.$$



                  Next,



                  $$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$



                  $$S_2(k)=2S_1(k)+aS_2(k)$$ and



                  $$S_2(k)=frac2a(1-a)^3.$$



                  You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.



                  Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.



                  $$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$






                  share|cite|improve this answer



























                    up vote
                    2
                    down vote













                    Hint:



                    For $a<1$,



                    $$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$



                    Then



                    $$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$



                    $$S_1(k)=S_0(k)+aS_1(k)$$ and



                    $$S_1(k)=frac a(1-a)^2.$$



                    Next,



                    $$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$



                    $$S_2(k)=2S_1(k)+aS_2(k)$$ and



                    $$S_2(k)=frac2a(1-a)^3.$$



                    You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.



                    Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.



                    $$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$






                    share|cite|improve this answer

























                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      Hint:



                      For $a<1$,



                      $$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$



                      Then



                      $$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$



                      $$S_1(k)=S_0(k)+aS_1(k)$$ and



                      $$S_1(k)=frac a(1-a)^2.$$



                      Next,



                      $$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$



                      $$S_2(k)=2S_1(k)+aS_2(k)$$ and



                      $$S_2(k)=frac2a(1-a)^3.$$



                      You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.



                      Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.



                      $$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$






                      share|cite|improve this answer















                      Hint:



                      For $a<1$,



                      $$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$



                      Then



                      $$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$



                      $$S_1(k)=S_0(k)+aS_1(k)$$ and



                      $$S_1(k)=frac a(1-a)^2.$$



                      Next,



                      $$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$



                      $$S_2(k)=2S_1(k)+aS_2(k)$$ and



                      $$S_2(k)=frac2a(1-a)^3.$$



                      You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.



                      Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.



                      $$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$







                      share|cite|improve this answer















                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jul 27 at 21:40


























                      answered Jul 27 at 21:28









                      Yves Daoust

                      110k665203




                      110k665203




















                          up vote
                          2
                          down vote













                          The general term is $frac(2k-1)^22^k$. Using that, we get
                          $$
                          beginalign
                          sum_k=1^inftyfrac(2k-1)^22^k
                          &=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
                          &=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
                          &=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
                          &=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
                          &=17tag5
                          endalign
                          $$
                          Explanation:

                          $(1)$: $(2k-1)^2=4k(k-1)+1$

                          $(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$

                          $(3)$: convert to negative binomial coefficients

                          $(4)$: Generalized Binomial Theorem

                          $(5)$: evaluate






                          share|cite|improve this answer



























                            up vote
                            2
                            down vote













                            The general term is $frac(2k-1)^22^k$. Using that, we get
                            $$
                            beginalign
                            sum_k=1^inftyfrac(2k-1)^22^k
                            &=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
                            &=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
                            &=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
                            &=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
                            &=17tag5
                            endalign
                            $$
                            Explanation:

                            $(1)$: $(2k-1)^2=4k(k-1)+1$

                            $(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$

                            $(3)$: convert to negative binomial coefficients

                            $(4)$: Generalized Binomial Theorem

                            $(5)$: evaluate






                            share|cite|improve this answer

























                              up vote
                              2
                              down vote










                              up vote
                              2
                              down vote









                              The general term is $frac(2k-1)^22^k$. Using that, we get
                              $$
                              beginalign
                              sum_k=1^inftyfrac(2k-1)^22^k
                              &=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
                              &=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
                              &=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
                              &=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
                              &=17tag5
                              endalign
                              $$
                              Explanation:

                              $(1)$: $(2k-1)^2=4k(k-1)+1$

                              $(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$

                              $(3)$: convert to negative binomial coefficients

                              $(4)$: Generalized Binomial Theorem

                              $(5)$: evaluate






                              share|cite|improve this answer















                              The general term is $frac(2k-1)^22^k$. Using that, we get
                              $$
                              beginalign
                              sum_k=1^inftyfrac(2k-1)^22^k
                              &=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
                              &=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
                              &=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
                              &=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
                              &=17tag5
                              endalign
                              $$
                              Explanation:

                              $(1)$: $(2k-1)^2=4k(k-1)+1$

                              $(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$

                              $(3)$: convert to negative binomial coefficients

                              $(4)$: Generalized Binomial Theorem

                              $(5)$: evaluate







                              share|cite|improve this answer















                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jul 27 at 22:22


























                              answered Jul 27 at 21:21









                              robjohn♦

                              258k25297612




                              258k25297612




















                                  up vote
                                  1
                                  down vote













                                  Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
                                  $$n^2=n(n-1)+n$$ which makes
                                  $$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$



                                  Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.






                                  share|cite|improve this answer

























                                    up vote
                                    1
                                    down vote













                                    Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
                                    $$n^2=n(n-1)+n$$ which makes
                                    $$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$



                                    Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.






                                    share|cite|improve this answer























                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
                                      $$n^2=n(n-1)+n$$ which makes
                                      $$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$



                                      Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.






                                      share|cite|improve this answer













                                      Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
                                      $$n^2=n(n-1)+n$$ which makes
                                      $$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$



                                      Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.







                                      share|cite|improve this answer













                                      share|cite|improve this answer



                                      share|cite|improve this answer











                                      answered Jul 28 at 6:04









                                      Claude Leibovici

                                      111k1055126




                                      111k1055126






















                                           

                                          draft saved


                                          draft discarded


























                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864643%2fevaluating-frac1221-frac3222-frac5223-cdots-using-sigma%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          Comments

                                          Popular posts from this blog

                                          What is the equation of a 3D cone with generalised tilt?

                                          Color the edges and diagonals of a regular polygon

                                          Relationship between determinant of matrix and determinant of adjoint?