Evaluating $frac1^22^1+frac3^22^2+frac5^22^3+cdots$ using sigma notation
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
This question can be solved by method of difference
but I want to solve solve it using sigma notation:
$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$
I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes
$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.
Answer = $17$
sequences-and-series
 |Â
show 6 more comments
up vote
3
down vote
favorite
This question can be solved by method of difference
but I want to solve solve it using sigma notation:
$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$
I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes
$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.
Answer = $17$
sequences-and-series
everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12
You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32
@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35
You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36
1
@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54
 |Â
show 6 more comments
up vote
3
down vote
favorite
up vote
3
down vote
favorite
This question can be solved by method of difference
but I want to solve solve it using sigma notation:
$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$
I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes
$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.
Answer = $17$
sequences-and-series
This question can be solved by method of difference
but I want to solve solve it using sigma notation:
$$frac1^22^1+frac3^22^2+frac5^22^3+cdots+frac(2r +1)^22^r+cdots$$
I used the geometric progression summation for the $(1/2)^r$ part, and opened $(2r+1)^2$ to $(4r^2 + 1 + 4r)$. If I now express this in sigma notation, it becomes
$$frac4n(n+1)(2n+1)6 + n + frac4(ncdot n+1)2$$ but I getting problem while putting upper limit infinity.
Where did I go wrong? Please explain.
Answer = $17$
sequences-and-series
edited Jul 27 at 18:49


Blue
43.6k868141
43.6k868141
asked Jul 27 at 18:03
jame samajoe
288
288
everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12
You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32
@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35
You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36
1
@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54
 |Â
show 6 more comments
everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12
You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32
@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35
You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36
1
@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54
everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12
everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12
You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32
You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32
@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35
@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35
You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36
You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36
1
1
@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54
@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54
 |Â
show 6 more comments
4 Answers
4
active
oldest
votes
up vote
5
down vote
accepted
A simple answer to the question
Note that
beginmultline*
Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
endmultline*
since each of the series on the right hand side are convergent.
First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
As for $I_1$,
beginalign*
I_1 & =frac12^1+frac22^2+frac32^3+cdots\
frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
endalign*
and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
As for $I_2$, note that
beginalign*
I_2 & =frac12^1+frac42^2+frac92^3+cdots\
frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
endalign*
In other words,
$$
frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
$$
Putting this all together,
$$
S=4cdot6-4cdot2+1=24-8+1=17.
$$
Generalizing the above
We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
$$
boxedI_m=sum_ngeq1n^mc^-n
$$
Note that $I_0=(c-1)^-1$. If $m>0$, then
beginmultline*
left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
=sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
=sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
=sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
=sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
endmultline*
This yields the recurrence
$$
boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
$$
Relationship to polylogarithm
Note that $I_m$ is related to the polylogarithm:
$$
operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
$$
Expressing our identity in terms of the polylogarithm,
$$
boxed<1
$$
There are various other expressions for $operatornameLi_-m(z)$
where $m$ is positive and $z$ is complex.
add a comment |Â
up vote
2
down vote
Hint:
For $a<1$,
$$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$
Then
$$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$
$$S_1(k)=S_0(k)+aS_1(k)$$ and
$$S_1(k)=frac a(1-a)^2.$$
Next,
$$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$
$$S_2(k)=2S_1(k)+aS_2(k)$$ and
$$S_2(k)=frac2a(1-a)^3.$$
You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.
Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.
$$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$
add a comment |Â
up vote
2
down vote
The general term is $frac(2k-1)^22^k$. Using that, we get
$$
beginalign
sum_k=1^inftyfrac(2k-1)^22^k
&=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
&=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
&=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
&=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
&=17tag5
endalign
$$
Explanation:
$(1)$: $(2k-1)^2=4k(k-1)+1$
$(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$
$(3)$: convert to negative binomial coefficients
$(4)$: Generalized Binomial Theorem
$(5)$: evaluate
add a comment |Â
up vote
1
down vote
Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
$$n^2=n(n-1)+n$$ which makes
$$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$
Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
A simple answer to the question
Note that
beginmultline*
Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
endmultline*
since each of the series on the right hand side are convergent.
First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
As for $I_1$,
beginalign*
I_1 & =frac12^1+frac22^2+frac32^3+cdots\
frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
endalign*
and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
As for $I_2$, note that
beginalign*
I_2 & =frac12^1+frac42^2+frac92^3+cdots\
frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
endalign*
In other words,
$$
frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
$$
Putting this all together,
$$
S=4cdot6-4cdot2+1=24-8+1=17.
$$
Generalizing the above
We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
$$
boxedI_m=sum_ngeq1n^mc^-n
$$
Note that $I_0=(c-1)^-1$. If $m>0$, then
beginmultline*
left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
=sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
=sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
=sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
=sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
endmultline*
This yields the recurrence
$$
boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
$$
Relationship to polylogarithm
Note that $I_m$ is related to the polylogarithm:
$$
operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
$$
Expressing our identity in terms of the polylogarithm,
$$
boxed<1
$$
There are various other expressions for $operatornameLi_-m(z)$
where $m$ is positive and $z$ is complex.
add a comment |Â
up vote
5
down vote
accepted
A simple answer to the question
Note that
beginmultline*
Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
endmultline*
since each of the series on the right hand side are convergent.
First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
As for $I_1$,
beginalign*
I_1 & =frac12^1+frac22^2+frac32^3+cdots\
frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
endalign*
and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
As for $I_2$, note that
beginalign*
I_2 & =frac12^1+frac42^2+frac92^3+cdots\
frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
endalign*
In other words,
$$
frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
$$
Putting this all together,
$$
S=4cdot6-4cdot2+1=24-8+1=17.
$$
Generalizing the above
We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
$$
boxedI_m=sum_ngeq1n^mc^-n
$$
Note that $I_0=(c-1)^-1$. If $m>0$, then
beginmultline*
left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
=sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
=sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
=sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
=sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
endmultline*
This yields the recurrence
$$
boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
$$
Relationship to polylogarithm
Note that $I_m$ is related to the polylogarithm:
$$
operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
$$
Expressing our identity in terms of the polylogarithm,
$$
boxed<1
$$
There are various other expressions for $operatornameLi_-m(z)$
where $m$ is positive and $z$ is complex.
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
A simple answer to the question
Note that
beginmultline*
Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
endmultline*
since each of the series on the right hand side are convergent.
First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
As for $I_1$,
beginalign*
I_1 & =frac12^1+frac22^2+frac32^3+cdots\
frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
endalign*
and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
As for $I_2$, note that
beginalign*
I_2 & =frac12^1+frac42^2+frac92^3+cdots\
frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
endalign*
In other words,
$$
frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
$$
Putting this all together,
$$
S=4cdot6-4cdot2+1=24-8+1=17.
$$
Generalizing the above
We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
$$
boxedI_m=sum_ngeq1n^mc^-n
$$
Note that $I_0=(c-1)^-1$. If $m>0$, then
beginmultline*
left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
=sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
=sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
=sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
=sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
endmultline*
This yields the recurrence
$$
boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
$$
Relationship to polylogarithm
Note that $I_m$ is related to the polylogarithm:
$$
operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
$$
Expressing our identity in terms of the polylogarithm,
$$
boxed<1
$$
There are various other expressions for $operatornameLi_-m(z)$
where $m$ is positive and $z$ is complex.
A simple answer to the question
Note that
beginmultline*
Sequivsum_ngeq1frac(2n-1)^22^n=sum_ngeq1frac4n^2-4n+12^n=4sum_ngeq1fracn^22^n-4sum_ngeq1fracn2^n+sum_ngeq1frac12^nequiv4I_2-4I_1+I_0.
endmultline*
since each of the series on the right hand side are convergent.
First, note that $I_0$ is a geometric series with $I_0=1$ (you can find an exposition to geometric series on Wikipedia).
As for $I_1$,
beginalign*
I_1 & =frac12^1+frac22^2+frac32^3+cdots\
frac12I_1 & =frac02^1+frac12^2+frac22^3+cdots\
frac12I_1=I_1-frac12I_1 & =frac12^1+frac12^2+frac12^3+cdots
endalign*
and hence $frac12I_1$ is once again a geometric series with $frac12I_1=1$ so that $I_1=2$.
As for $I_2$, note that
beginalign*
I_2 & =frac12^1+frac42^2+frac92^3+cdots\
frac12I_2 & =frac02^1+frac12^2+frac42^3+cdots\
frac12I_2=I_2-frac12I_2 & =frac12^1+frac32^2+frac52^3+cdots
endalign*
In other words,
$$
frac12I_2=sum_ngeq1frac2n-12^n=2I_1-I_0=2cdot2-1=3.
$$
Putting this all together,
$$
S=4cdot6-4cdot2+1=24-8+1=17.
$$
Generalizing the above
We can generalize the approach above. Fix a constant $cinmathbbC$ with $|c|>1$. For each nonnegative integer $m$, let
$$
boxedI_m=sum_ngeq1n^mc^-n
$$
Note that $I_0=(c-1)^-1$. If $m>0$, then
beginmultline*
left(c-1right)c^-1I_m=I_m-c^-1I_m=sum_ngeq1n^mc^-n-sum_ngeq1n^mc^-n-1\
=sum_ngeq1n^mc^-n-sum_ngeq1left(n-1right)^mc^-n=sum_ngeq1left(n^m-left(n-1right)^mright)c^-n\
=sum_ngeq1left(n^m-sum_k=0^mbinommkn^kleft(-1right)^m-kright)c^-n
=sum_ngeq1left(sum_k=0^m-1binommkn^kleft(-1right)^m-1-kright)c^-n\
=sum_k=0^m-1binommkleft(-1right)^m-1-kI_k.
endmultline*
This yields the recurrence
$$
boxedI_m=left(c-1right)^-1csum_k=0^m-1binommkleft(-1right)^m-1-kI_kqquadtextfor mgeq 1
$$
Relationship to polylogarithm
Note that $I_m$ is related to the polylogarithm:
$$
operatornameLi_-m(c^-1)=sum_ngeq1fracleft(c^-1right)^nn^-m=sum_ngeq1fracc^-nn^-m=sum_ngeq1n^mc^-n=I_m.
$$
Expressing our identity in terms of the polylogarithm,
$$
boxed<1
$$
There are various other expressions for $operatornameLi_-m(z)$
where $m$ is positive and $z$ is complex.
edited Jul 27 at 22:14
answered Jul 27 at 18:44
parsiad
15.9k32253
15.9k32253
add a comment |Â
add a comment |Â
up vote
2
down vote
Hint:
For $a<1$,
$$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$
Then
$$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$
$$S_1(k)=S_0(k)+aS_1(k)$$ and
$$S_1(k)=frac a(1-a)^2.$$
Next,
$$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$
$$S_2(k)=2S_1(k)+aS_2(k)$$ and
$$S_2(k)=frac2a(1-a)^3.$$
You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.
Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.
$$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$
add a comment |Â
up vote
2
down vote
Hint:
For $a<1$,
$$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$
Then
$$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$
$$S_1(k)=S_0(k)+aS_1(k)$$ and
$$S_1(k)=frac a(1-a)^2.$$
Next,
$$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$
$$S_2(k)=2S_1(k)+aS_2(k)$$ and
$$S_2(k)=frac2a(1-a)^3.$$
You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.
Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.
$$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint:
For $a<1$,
$$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$
Then
$$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$
$$S_1(k)=S_0(k)+aS_1(k)$$ and
$$S_1(k)=frac a(1-a)^2.$$
Next,
$$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$
$$S_2(k)=2S_1(k)+aS_2(k)$$ and
$$S_2(k)=frac2a(1-a)^3.$$
You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.
Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.
$$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$
Hint:
For $a<1$,
$$S_0(k):=sum_k=1^infty a^k=frac a1-a.$$
Then
$$S_1(k):=sum_k=1^infty ka^k=sum_k=1^infty a^k+asum_k=1^infty(k-1)a^k-1,$$
$$S_1(k)=S_0(k)+aS_1(k)$$ and
$$S_1(k)=frac a(1-a)^2.$$
Next,
$$S_2(k):=sum_k=1^infty k(k+1)a^k=sum_k=1^infty 2ka^k+asum_k=1^infty(k-1)ka^k-1,$$
$$S_2(k)=2S_1(k)+aS_2(k)$$ and
$$S_2(k)=frac2a(1-a)^3.$$
You can continue with $k(k+1)(k+2)a^ktodfrac3!a(1-a)^4$ and so on.
Now, any polynomial in $k$, such as $(2k+1)^2$ can be expressed as a linear combination of $1,k,k(k+1),cdots$ and the summation follows.
$$(2k-1)^2=4k(k+1)-8k+1,a=frac12to4fracfrac22frac12^3-8fracfrac12frac12^2+fracfrac12frac12=17.$$
edited Jul 27 at 21:40
answered Jul 27 at 21:28
Yves Daoust
110k665203
110k665203
add a comment |Â
add a comment |Â
up vote
2
down vote
The general term is $frac(2k-1)^22^k$. Using that, we get
$$
beginalign
sum_k=1^inftyfrac(2k-1)^22^k
&=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
&=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
&=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
&=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
&=17tag5
endalign
$$
Explanation:
$(1)$: $(2k-1)^2=4k(k-1)+1$
$(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$
$(3)$: convert to negative binomial coefficients
$(4)$: Generalized Binomial Theorem
$(5)$: evaluate
add a comment |Â
up vote
2
down vote
The general term is $frac(2k-1)^22^k$. Using that, we get
$$
beginalign
sum_k=1^inftyfrac(2k-1)^22^k
&=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
&=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
&=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
&=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
&=17tag5
endalign
$$
Explanation:
$(1)$: $(2k-1)^2=4k(k-1)+1$
$(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$
$(3)$: convert to negative binomial coefficients
$(4)$: Generalized Binomial Theorem
$(5)$: evaluate
add a comment |Â
up vote
2
down vote
up vote
2
down vote
The general term is $frac(2k-1)^22^k$. Using that, we get
$$
beginalign
sum_k=1^inftyfrac(2k-1)^22^k
&=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
&=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
&=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
&=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
&=17tag5
endalign
$$
Explanation:
$(1)$: $(2k-1)^2=4k(k-1)+1$
$(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$
$(3)$: convert to negative binomial coefficients
$(4)$: Generalized Binomial Theorem
$(5)$: evaluate
The general term is $frac(2k-1)^22^k$. Using that, we get
$$
beginalign
sum_k=1^inftyfrac(2k-1)^22^k
&=sum_k=1^inftyfrac4k(k-1)+12^ktag1\
&=sum_k=1^infty8binomkk-2left(frac12right)^k+sum_k=1^inftybinomk-1k-1left(frac12right)^ktag2\
&=sum_k=1^infty8binom-3k-2left(-frac12right)^k-sum_k=1^inftybinom-1k-1left(-frac12right)^ktag3\
&=2left(1-frac12right)^-3+frac12left(1-frac12right)^-1tag4\[12pt]
&=17tag5
endalign
$$
Explanation:
$(1)$: $(2k-1)^2=4k(k-1)+1$
$(2)$: $4k(k-1)=8binomk2=8binomkk-2$ for $kge2$ and $binomk-1k-1=1$ for $kge1$
$(3)$: convert to negative binomial coefficients
$(4)$: Generalized Binomial Theorem
$(5)$: evaluate
edited Jul 27 at 22:22
answered Jul 27 at 21:21
robjohn♦
258k25297612
258k25297612
add a comment |Â
add a comment |Â
up vote
1
down vote
Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
$$n^2=n(n-1)+n$$ which makes
$$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$
Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.
add a comment |Â
up vote
1
down vote
Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
$$n^2=n(n-1)+n$$ which makes
$$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$
Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
$$n^2=n(n-1)+n$$ which makes
$$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$
Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.
Consider$$S_r=sum_n=1^r(2n-1)^2x^n=sum_n=1^r(4n^2-4n+1)x^n$$ Now, rewrite
$$n^2=n(n-1)+n$$ which makes
$$S_r=sum_n=1^r(4n(n-1)+1)x^n=4x^2sum_n=1^r n(n-1)x^n-2+sum_n=1^r x^n$$ that is to say $$S_r=4x^2 left(sum_n=1^r x^n right)''+sum_n=1^r x^n$$
Recall that $$sum_n=1^r x^n=fracx left(1-x^rright)1-x$$ Compute the second derivative and simplify; when finished, make $x=frac 12$ and take the limit for $r to infty$.
answered Jul 28 at 6:04
Claude Leibovici
111k1055126
111k1055126
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864643%2fevaluating-frac1221-frac3222-frac5223-cdots-using-sigma%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
everything is getting messed up as i m applying infinity while doing summation what to do where am i wrong
– jame samajoe
Jul 27 at 18:12
You... forgot the factor $1/2^r$ in your 3 resulting summations.
– Clement C.
Jul 27 at 18:32
@ClementC. can u explain what u want to say
– jame samajoe
Jul 27 at 18:35
You computed $$sum_r=1^n 4r^2 + sum_r=1^n 1+ sum_r=1^n 4r$$ instead of $$sum_r=1^n frac4r^22^r + sum_r=1^n frac12^r+ sum_r=1^n frac4r2^r$$
– Clement C.
Jul 27 at 18:36
1
@jamesamajoe Not that the r-th summand is $$frac(2r colorred-1)^22^r$$ Y
– callculus
Jul 27 at 18:54