Finding out Eigenvalues and Eigenvectors

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Question:
$A=beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$



I am trying to find out the Eigenvalues and Eigenvector for this question. During my working out (I use the cover-up method- First row/First column, Second row/Second column etc.), I've gone until $(λ-1)[(λ-1)(λ-2)]+(1)[(0)(λ-2)]-(2)[(0)(λ-1)]$. Is the working out right so far? Also not sure what $1[(0)cdot(λ-2)]$ equals to?



Mainly the eigenvalues and I'm having issues with.







share|cite|improve this question

















  • 1




    $1.[0.(lambda-2)]=0$ simply
    – Isham
    Aug 2 at 13:50











  • I found the eigenvectors as well
    – RHowe
    Aug 2 at 20:57














up vote
0
down vote

favorite












Question:
$A=beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$



I am trying to find out the Eigenvalues and Eigenvector for this question. During my working out (I use the cover-up method- First row/First column, Second row/Second column etc.), I've gone until $(λ-1)[(λ-1)(λ-2)]+(1)[(0)(λ-2)]-(2)[(0)(λ-1)]$. Is the working out right so far? Also not sure what $1[(0)cdot(λ-2)]$ equals to?



Mainly the eigenvalues and I'm having issues with.







share|cite|improve this question

















  • 1




    $1.[0.(lambda-2)]=0$ simply
    – Isham
    Aug 2 at 13:50











  • I found the eigenvectors as well
    – RHowe
    Aug 2 at 20:57












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Question:
$A=beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$



I am trying to find out the Eigenvalues and Eigenvector for this question. During my working out (I use the cover-up method- First row/First column, Second row/Second column etc.), I've gone until $(λ-1)[(λ-1)(λ-2)]+(1)[(0)(λ-2)]-(2)[(0)(λ-1)]$. Is the working out right so far? Also not sure what $1[(0)cdot(λ-2)]$ equals to?



Mainly the eigenvalues and I'm having issues with.







share|cite|improve this question













Question:
$A=beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$



I am trying to find out the Eigenvalues and Eigenvector for this question. During my working out (I use the cover-up method- First row/First column, Second row/Second column etc.), I've gone until $(λ-1)[(λ-1)(λ-2)]+(1)[(0)(λ-2)]-(2)[(0)(λ-1)]$. Is the working out right so far? Also not sure what $1[(0)cdot(λ-2)]$ equals to?



Mainly the eigenvalues and I'm having issues with.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 2 at 13:47









mrtaurho

619117




619117









asked Aug 2 at 13:39









SGcipher

6




6







  • 1




    $1.[0.(lambda-2)]=0$ simply
    – Isham
    Aug 2 at 13:50











  • I found the eigenvectors as well
    – RHowe
    Aug 2 at 20:57












  • 1




    $1.[0.(lambda-2)]=0$ simply
    – Isham
    Aug 2 at 13:50











  • I found the eigenvectors as well
    – RHowe
    Aug 2 at 20:57







1




1




$1.[0.(lambda-2)]=0$ simply
– Isham
Aug 2 at 13:50





$1.[0.(lambda-2)]=0$ simply
– Isham
Aug 2 at 13:50













I found the eigenvectors as well
– RHowe
Aug 2 at 20:57




I found the eigenvectors as well
– RHowe
Aug 2 at 20:57










5 Answers
5






active

oldest

votes

















up vote
3
down vote













From here



$$|A-lambda I|=beginvmatrix
1-lambda & 1 & 2\
0 & 1-lambda & 3\
0 & 0 & 2-lambdaendvmatrix=(1-lambda)^2(2-lambda)=0$$



we can see that for a up triangular matrix eigenvalues are the diagonal entries.



Now for each $lambda$ solve $(A-lambda I)x=0$ to find the corresponding eigenvectors.






share|cite|improve this answer




























    up vote
    2
    down vote













    Hint: All Eigenvalues of a upper-tringular matrix are the items on it's diagonal so they are $1,2$.






    share|cite|improve this answer




























      up vote
      1
      down vote













      $$A~=~beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$$



      By plugging in the eigenvalues and compute the determinate we get



      $$A~=~beginvmatrix1-lambda&1&2\0&1-lambda&3\0&0&2-lambdaendvmatrix=(1-lambda)cdotbeginvmatrix1-lambda&3\0&2-lambdaendvmatrix+1cdotbeginvmatrix3&0\2-lambda&0endvmatrix+2cdotbeginvmatrix0&1-lambda\0&0endvmatrix=(1-lambda)^2(2-lambda)+1cdot(0)+2cdot(0)$$



      Where two of the three summands vanish because a product with $0$ is always $0$ aswell and so only $(1-lambda)^2(2-lambda)$ remains which you have to set equal to zero. This term is already in the form where you can just see the roots, which are $lambda_1,2=1,lambda_3=2$.






      share|cite|improve this answer




























        up vote
        1
        down vote













        If $A$ is a triangular matrix then the determinant of $A$ is $det(A) = prod_i=1^n a_ii$



        It follows that



        $$ det(A-lambda I) = prod_i=1^n a_ii - lambda$$



        then if



        $$ A = beginbmatrix 1& 1 & 2 \ 0 & 1 & 3 \ 0 & 0 & 2endbmatrix $$



        $$det(A- lambda I) = prod_i=1^n a_ii - lambda = (1-lambda)(1-lambda)(2-lambda) $$



        Then we know



        $$lambda_1,lambda_2 = 1, lambda_3 = 2 $$



        To determine the eigenvectors we solve the linear equation $(A-lambda_jI)x =mathbb0 $ for $ j=1,2,3$ using $lambda_3 =2$ we have



        $$(A-I)x = beginbmatrix -x_1+ x_2 + 2x_3 \ -x_2 + 3x_3 \ 0 x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$



        $$ -x_2 + x_3 = 0 implies x_2 = 3x_3$$
        $$ -x_1 + x_2 +2x_3 implies -x_1 + 3x_3 +2x_2 =0 implies x_1 = 5x_3 $$



        $$ u_3 = beginbmatrix 1 \ frac35 \ frac15endbmatrix$$
        $lambda_1 = 1 $



        $$ | u_3| = sqrt1+ (frac35)^2 + (frac15)^2 $$
        $$ | u_3| = sqrt1+ frac925 + frac125 $$
        $$ | u_3| = sqrt1+ frac1025 $$
        $$ | u_3| = sqrt frac3525 $$
        $$ | u_3| = fracsqrt355 $$
        $$ v_3 = fracu_3 u_3 = [frac1fracsqrt355 , fracfrac35fracsqrt355, fracfrac15fracsqrt355 ]$$



        now $lambda_1 = 1 $
        $$(A-I)x = beginbmatrix x_2 + 2x_3 \ x_2 + 3x_3 \ x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$
        $$ x_3 = 0 implies x_2 + 3x_3 = x_2 + 0 = 0 implies x_2 = 0 $$
        our assumption was $x_1 =1$
        $$u_1 = beginbmatrix1 \ 0 \0 endbmatrix $$
        $$u_2 = beginbmatrix-1 \ 0 \0 endbmatrix $$
        testing this in computer



        A = np.array([[1,1,2],[0,1,3],[0,0,2]])
        vals, vecs = LA.eig(A)
        test = np.sqrt(35)/5
        test1 = [1/test, (3/5)/test, (1/5)/test]

        Out[2]:
        array([[ 1.00000000e+00, -1.00000000e+00, 8.45154255e-01],
        [ 0.00000000e+00, 2.22044605e-16, 5.07092553e-01],
        [ 0.00000000e+00, 0.00000000e+00, 1.69030851e-01]])

        test1
        Out[3]: [0.8451542547285166, 0.50709255283711, 0.16903085094570333]





        share|cite|improve this answer






























          up vote
          0
          down vote













          There is actually just one genuine eigenvector for the eigenvalue $1.$ There are "generalized" eigenvectors, which lead to the Jordan Normal Form. For the middle column of my matrix $R,$ I chose from among the vectors $v$ for which $(A-I)^2 v = 0$ but $(A-I) v neq 0.$ Then the first column, a genuine eigenvector, is $u =(A-I) v $



          $$
          R =
          left(
          beginarrayccc
          1 & 0 & 5 \
          0 & 1 & 3 \
          0 & 0 & 1
          endarray
          right)
          $$



          The Jordan form is $ R^-1 A R = J$ and has a special shape.



          $$
          left(
          beginarrayccc
          1 & 0 & -5 \
          0 & 1 & -3 \
          0 & 0 & 1
          endarray
          right)
          left(
          beginarrayccc
          1 & 1 & 2 \
          0 & 1 & 3 \
          0 & 0 & 2
          endarray
          right)
          left(
          beginarrayccc
          1 & 0 & 5 \
          0 & 1 & 3 \
          0 & 0 & 1
          endarray
          right)=
          left(
          beginarrayccc
          1 & 1 & 0 \
          0 & 1 & 0 \
          0 & 0 & 2
          endarray
          right)
          $$



          For applications such as finding $e^At$ it is the reverse identity that is important, $RJR^-1 = A,$



          $$
          left(
          beginarrayccc
          1 & 0 & 5 \
          0 & 1 & 3 \
          0 & 0 & 1
          endarray
          right)
          left(
          beginarrayccc
          1 & 1 & 0 \
          0 & 1 & 0 \
          0 & 0 & 2
          endarray
          right)
          left(
          beginarrayccc
          1 & 0 & -5 \
          0 & 1 & -3 \
          0 & 0 & 1
          endarray
          right) =
          left(
          beginarrayccc
          1 & 1 & 2 \
          0 & 1 & 3 \
          0 & 0 & 2
          endarray
          right)
          $$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870070%2ffinding-out-eigenvalues-and-eigenvectors%23new-answer', 'question_page');

            );

            Post as a guest






























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote













            From here



            $$|A-lambda I|=beginvmatrix
            1-lambda & 1 & 2\
            0 & 1-lambda & 3\
            0 & 0 & 2-lambdaendvmatrix=(1-lambda)^2(2-lambda)=0$$



            we can see that for a up triangular matrix eigenvalues are the diagonal entries.



            Now for each $lambda$ solve $(A-lambda I)x=0$ to find the corresponding eigenvectors.






            share|cite|improve this answer

























              up vote
              3
              down vote













              From here



              $$|A-lambda I|=beginvmatrix
              1-lambda & 1 & 2\
              0 & 1-lambda & 3\
              0 & 0 & 2-lambdaendvmatrix=(1-lambda)^2(2-lambda)=0$$



              we can see that for a up triangular matrix eigenvalues are the diagonal entries.



              Now for each $lambda$ solve $(A-lambda I)x=0$ to find the corresponding eigenvectors.






              share|cite|improve this answer























                up vote
                3
                down vote










                up vote
                3
                down vote









                From here



                $$|A-lambda I|=beginvmatrix
                1-lambda & 1 & 2\
                0 & 1-lambda & 3\
                0 & 0 & 2-lambdaendvmatrix=(1-lambda)^2(2-lambda)=0$$



                we can see that for a up triangular matrix eigenvalues are the diagonal entries.



                Now for each $lambda$ solve $(A-lambda I)x=0$ to find the corresponding eigenvectors.






                share|cite|improve this answer













                From here



                $$|A-lambda I|=beginvmatrix
                1-lambda & 1 & 2\
                0 & 1-lambda & 3\
                0 & 0 & 2-lambdaendvmatrix=(1-lambda)^2(2-lambda)=0$$



                we can see that for a up triangular matrix eigenvalues are the diagonal entries.



                Now for each $lambda$ solve $(A-lambda I)x=0$ to find the corresponding eigenvectors.







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Aug 2 at 13:45









                gimusi

                63.8k73480




                63.8k73480




















                    up vote
                    2
                    down vote













                    Hint: All Eigenvalues of a upper-tringular matrix are the items on it's diagonal so they are $1,2$.






                    share|cite|improve this answer

























                      up vote
                      2
                      down vote













                      Hint: All Eigenvalues of a upper-tringular matrix are the items on it's diagonal so they are $1,2$.






                      share|cite|improve this answer























                        up vote
                        2
                        down vote










                        up vote
                        2
                        down vote









                        Hint: All Eigenvalues of a upper-tringular matrix are the items on it's diagonal so they are $1,2$.






                        share|cite|improve this answer













                        Hint: All Eigenvalues of a upper-tringular matrix are the items on it's diagonal so they are $1,2$.







                        share|cite|improve this answer













                        share|cite|improve this answer



                        share|cite|improve this answer











                        answered Aug 2 at 13:50









                        user 108128

                        18.8k41544




                        18.8k41544




















                            up vote
                            1
                            down vote













                            $$A~=~beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$$



                            By plugging in the eigenvalues and compute the determinate we get



                            $$A~=~beginvmatrix1-lambda&1&2\0&1-lambda&3\0&0&2-lambdaendvmatrix=(1-lambda)cdotbeginvmatrix1-lambda&3\0&2-lambdaendvmatrix+1cdotbeginvmatrix3&0\2-lambda&0endvmatrix+2cdotbeginvmatrix0&1-lambda\0&0endvmatrix=(1-lambda)^2(2-lambda)+1cdot(0)+2cdot(0)$$



                            Where two of the three summands vanish because a product with $0$ is always $0$ aswell and so only $(1-lambda)^2(2-lambda)$ remains which you have to set equal to zero. This term is already in the form where you can just see the roots, which are $lambda_1,2=1,lambda_3=2$.






                            share|cite|improve this answer

























                              up vote
                              1
                              down vote













                              $$A~=~beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$$



                              By plugging in the eigenvalues and compute the determinate we get



                              $$A~=~beginvmatrix1-lambda&1&2\0&1-lambda&3\0&0&2-lambdaendvmatrix=(1-lambda)cdotbeginvmatrix1-lambda&3\0&2-lambdaendvmatrix+1cdotbeginvmatrix3&0\2-lambda&0endvmatrix+2cdotbeginvmatrix0&1-lambda\0&0endvmatrix=(1-lambda)^2(2-lambda)+1cdot(0)+2cdot(0)$$



                              Where two of the three summands vanish because a product with $0$ is always $0$ aswell and so only $(1-lambda)^2(2-lambda)$ remains which you have to set equal to zero. This term is already in the form where you can just see the roots, which are $lambda_1,2=1,lambda_3=2$.






                              share|cite|improve this answer























                                up vote
                                1
                                down vote










                                up vote
                                1
                                down vote









                                $$A~=~beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$$



                                By plugging in the eigenvalues and compute the determinate we get



                                $$A~=~beginvmatrix1-lambda&1&2\0&1-lambda&3\0&0&2-lambdaendvmatrix=(1-lambda)cdotbeginvmatrix1-lambda&3\0&2-lambdaendvmatrix+1cdotbeginvmatrix3&0\2-lambda&0endvmatrix+2cdotbeginvmatrix0&1-lambda\0&0endvmatrix=(1-lambda)^2(2-lambda)+1cdot(0)+2cdot(0)$$



                                Where two of the three summands vanish because a product with $0$ is always $0$ aswell and so only $(1-lambda)^2(2-lambda)$ remains which you have to set equal to zero. This term is already in the form where you can just see the roots, which are $lambda_1,2=1,lambda_3=2$.






                                share|cite|improve this answer













                                $$A~=~beginpmatrix1&1&2\0&1&3\0&0&2endpmatrix$$



                                By plugging in the eigenvalues and compute the determinate we get



                                $$A~=~beginvmatrix1-lambda&1&2\0&1-lambda&3\0&0&2-lambdaendvmatrix=(1-lambda)cdotbeginvmatrix1-lambda&3\0&2-lambdaendvmatrix+1cdotbeginvmatrix3&0\2-lambda&0endvmatrix+2cdotbeginvmatrix0&1-lambda\0&0endvmatrix=(1-lambda)^2(2-lambda)+1cdot(0)+2cdot(0)$$



                                Where two of the three summands vanish because a product with $0$ is always $0$ aswell and so only $(1-lambda)^2(2-lambda)$ remains which you have to set equal to zero. This term is already in the form where you can just see the roots, which are $lambda_1,2=1,lambda_3=2$.







                                share|cite|improve this answer













                                share|cite|improve this answer



                                share|cite|improve this answer











                                answered Aug 2 at 13:49









                                mrtaurho

                                619117




                                619117




















                                    up vote
                                    1
                                    down vote













                                    If $A$ is a triangular matrix then the determinant of $A$ is $det(A) = prod_i=1^n a_ii$



                                    It follows that



                                    $$ det(A-lambda I) = prod_i=1^n a_ii - lambda$$



                                    then if



                                    $$ A = beginbmatrix 1& 1 & 2 \ 0 & 1 & 3 \ 0 & 0 & 2endbmatrix $$



                                    $$det(A- lambda I) = prod_i=1^n a_ii - lambda = (1-lambda)(1-lambda)(2-lambda) $$



                                    Then we know



                                    $$lambda_1,lambda_2 = 1, lambda_3 = 2 $$



                                    To determine the eigenvectors we solve the linear equation $(A-lambda_jI)x =mathbb0 $ for $ j=1,2,3$ using $lambda_3 =2$ we have



                                    $$(A-I)x = beginbmatrix -x_1+ x_2 + 2x_3 \ -x_2 + 3x_3 \ 0 x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$



                                    $$ -x_2 + x_3 = 0 implies x_2 = 3x_3$$
                                    $$ -x_1 + x_2 +2x_3 implies -x_1 + 3x_3 +2x_2 =0 implies x_1 = 5x_3 $$



                                    $$ u_3 = beginbmatrix 1 \ frac35 \ frac15endbmatrix$$
                                    $lambda_1 = 1 $



                                    $$ | u_3| = sqrt1+ (frac35)^2 + (frac15)^2 $$
                                    $$ | u_3| = sqrt1+ frac925 + frac125 $$
                                    $$ | u_3| = sqrt1+ frac1025 $$
                                    $$ | u_3| = sqrt frac3525 $$
                                    $$ | u_3| = fracsqrt355 $$
                                    $$ v_3 = fracu_3 u_3 = [frac1fracsqrt355 , fracfrac35fracsqrt355, fracfrac15fracsqrt355 ]$$



                                    now $lambda_1 = 1 $
                                    $$(A-I)x = beginbmatrix x_2 + 2x_3 \ x_2 + 3x_3 \ x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$
                                    $$ x_3 = 0 implies x_2 + 3x_3 = x_2 + 0 = 0 implies x_2 = 0 $$
                                    our assumption was $x_1 =1$
                                    $$u_1 = beginbmatrix1 \ 0 \0 endbmatrix $$
                                    $$u_2 = beginbmatrix-1 \ 0 \0 endbmatrix $$
                                    testing this in computer



                                    A = np.array([[1,1,2],[0,1,3],[0,0,2]])
                                    vals, vecs = LA.eig(A)
                                    test = np.sqrt(35)/5
                                    test1 = [1/test, (3/5)/test, (1/5)/test]

                                    Out[2]:
                                    array([[ 1.00000000e+00, -1.00000000e+00, 8.45154255e-01],
                                    [ 0.00000000e+00, 2.22044605e-16, 5.07092553e-01],
                                    [ 0.00000000e+00, 0.00000000e+00, 1.69030851e-01]])

                                    test1
                                    Out[3]: [0.8451542547285166, 0.50709255283711, 0.16903085094570333]





                                    share|cite|improve this answer



























                                      up vote
                                      1
                                      down vote













                                      If $A$ is a triangular matrix then the determinant of $A$ is $det(A) = prod_i=1^n a_ii$



                                      It follows that



                                      $$ det(A-lambda I) = prod_i=1^n a_ii - lambda$$



                                      then if



                                      $$ A = beginbmatrix 1& 1 & 2 \ 0 & 1 & 3 \ 0 & 0 & 2endbmatrix $$



                                      $$det(A- lambda I) = prod_i=1^n a_ii - lambda = (1-lambda)(1-lambda)(2-lambda) $$



                                      Then we know



                                      $$lambda_1,lambda_2 = 1, lambda_3 = 2 $$



                                      To determine the eigenvectors we solve the linear equation $(A-lambda_jI)x =mathbb0 $ for $ j=1,2,3$ using $lambda_3 =2$ we have



                                      $$(A-I)x = beginbmatrix -x_1+ x_2 + 2x_3 \ -x_2 + 3x_3 \ 0 x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$



                                      $$ -x_2 + x_3 = 0 implies x_2 = 3x_3$$
                                      $$ -x_1 + x_2 +2x_3 implies -x_1 + 3x_3 +2x_2 =0 implies x_1 = 5x_3 $$



                                      $$ u_3 = beginbmatrix 1 \ frac35 \ frac15endbmatrix$$
                                      $lambda_1 = 1 $



                                      $$ | u_3| = sqrt1+ (frac35)^2 + (frac15)^2 $$
                                      $$ | u_3| = sqrt1+ frac925 + frac125 $$
                                      $$ | u_3| = sqrt1+ frac1025 $$
                                      $$ | u_3| = sqrt frac3525 $$
                                      $$ | u_3| = fracsqrt355 $$
                                      $$ v_3 = fracu_3 u_3 = [frac1fracsqrt355 , fracfrac35fracsqrt355, fracfrac15fracsqrt355 ]$$



                                      now $lambda_1 = 1 $
                                      $$(A-I)x = beginbmatrix x_2 + 2x_3 \ x_2 + 3x_3 \ x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$
                                      $$ x_3 = 0 implies x_2 + 3x_3 = x_2 + 0 = 0 implies x_2 = 0 $$
                                      our assumption was $x_1 =1$
                                      $$u_1 = beginbmatrix1 \ 0 \0 endbmatrix $$
                                      $$u_2 = beginbmatrix-1 \ 0 \0 endbmatrix $$
                                      testing this in computer



                                      A = np.array([[1,1,2],[0,1,3],[0,0,2]])
                                      vals, vecs = LA.eig(A)
                                      test = np.sqrt(35)/5
                                      test1 = [1/test, (3/5)/test, (1/5)/test]

                                      Out[2]:
                                      array([[ 1.00000000e+00, -1.00000000e+00, 8.45154255e-01],
                                      [ 0.00000000e+00, 2.22044605e-16, 5.07092553e-01],
                                      [ 0.00000000e+00, 0.00000000e+00, 1.69030851e-01]])

                                      test1
                                      Out[3]: [0.8451542547285166, 0.50709255283711, 0.16903085094570333]





                                      share|cite|improve this answer

























                                        up vote
                                        1
                                        down vote










                                        up vote
                                        1
                                        down vote









                                        If $A$ is a triangular matrix then the determinant of $A$ is $det(A) = prod_i=1^n a_ii$



                                        It follows that



                                        $$ det(A-lambda I) = prod_i=1^n a_ii - lambda$$



                                        then if



                                        $$ A = beginbmatrix 1& 1 & 2 \ 0 & 1 & 3 \ 0 & 0 & 2endbmatrix $$



                                        $$det(A- lambda I) = prod_i=1^n a_ii - lambda = (1-lambda)(1-lambda)(2-lambda) $$



                                        Then we know



                                        $$lambda_1,lambda_2 = 1, lambda_3 = 2 $$



                                        To determine the eigenvectors we solve the linear equation $(A-lambda_jI)x =mathbb0 $ for $ j=1,2,3$ using $lambda_3 =2$ we have



                                        $$(A-I)x = beginbmatrix -x_1+ x_2 + 2x_3 \ -x_2 + 3x_3 \ 0 x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$



                                        $$ -x_2 + x_3 = 0 implies x_2 = 3x_3$$
                                        $$ -x_1 + x_2 +2x_3 implies -x_1 + 3x_3 +2x_2 =0 implies x_1 = 5x_3 $$



                                        $$ u_3 = beginbmatrix 1 \ frac35 \ frac15endbmatrix$$
                                        $lambda_1 = 1 $



                                        $$ | u_3| = sqrt1+ (frac35)^2 + (frac15)^2 $$
                                        $$ | u_3| = sqrt1+ frac925 + frac125 $$
                                        $$ | u_3| = sqrt1+ frac1025 $$
                                        $$ | u_3| = sqrt frac3525 $$
                                        $$ | u_3| = fracsqrt355 $$
                                        $$ v_3 = fracu_3 u_3 = [frac1fracsqrt355 , fracfrac35fracsqrt355, fracfrac15fracsqrt355 ]$$



                                        now $lambda_1 = 1 $
                                        $$(A-I)x = beginbmatrix x_2 + 2x_3 \ x_2 + 3x_3 \ x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$
                                        $$ x_3 = 0 implies x_2 + 3x_3 = x_2 + 0 = 0 implies x_2 = 0 $$
                                        our assumption was $x_1 =1$
                                        $$u_1 = beginbmatrix1 \ 0 \0 endbmatrix $$
                                        $$u_2 = beginbmatrix-1 \ 0 \0 endbmatrix $$
                                        testing this in computer



                                        A = np.array([[1,1,2],[0,1,3],[0,0,2]])
                                        vals, vecs = LA.eig(A)
                                        test = np.sqrt(35)/5
                                        test1 = [1/test, (3/5)/test, (1/5)/test]

                                        Out[2]:
                                        array([[ 1.00000000e+00, -1.00000000e+00, 8.45154255e-01],
                                        [ 0.00000000e+00, 2.22044605e-16, 5.07092553e-01],
                                        [ 0.00000000e+00, 0.00000000e+00, 1.69030851e-01]])

                                        test1
                                        Out[3]: [0.8451542547285166, 0.50709255283711, 0.16903085094570333]





                                        share|cite|improve this answer















                                        If $A$ is a triangular matrix then the determinant of $A$ is $det(A) = prod_i=1^n a_ii$



                                        It follows that



                                        $$ det(A-lambda I) = prod_i=1^n a_ii - lambda$$



                                        then if



                                        $$ A = beginbmatrix 1& 1 & 2 \ 0 & 1 & 3 \ 0 & 0 & 2endbmatrix $$



                                        $$det(A- lambda I) = prod_i=1^n a_ii - lambda = (1-lambda)(1-lambda)(2-lambda) $$



                                        Then we know



                                        $$lambda_1,lambda_2 = 1, lambda_3 = 2 $$



                                        To determine the eigenvectors we solve the linear equation $(A-lambda_jI)x =mathbb0 $ for $ j=1,2,3$ using $lambda_3 =2$ we have



                                        $$(A-I)x = beginbmatrix -x_1+ x_2 + 2x_3 \ -x_2 + 3x_3 \ 0 x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$



                                        $$ -x_2 + x_3 = 0 implies x_2 = 3x_3$$
                                        $$ -x_1 + x_2 +2x_3 implies -x_1 + 3x_3 +2x_2 =0 implies x_1 = 5x_3 $$



                                        $$ u_3 = beginbmatrix 1 \ frac35 \ frac15endbmatrix$$
                                        $lambda_1 = 1 $



                                        $$ | u_3| = sqrt1+ (frac35)^2 + (frac15)^2 $$
                                        $$ | u_3| = sqrt1+ frac925 + frac125 $$
                                        $$ | u_3| = sqrt1+ frac1025 $$
                                        $$ | u_3| = sqrt frac3525 $$
                                        $$ | u_3| = fracsqrt355 $$
                                        $$ v_3 = fracu_3 u_3 = [frac1fracsqrt355 , fracfrac35fracsqrt355, fracfrac15fracsqrt355 ]$$



                                        now $lambda_1 = 1 $
                                        $$(A-I)x = beginbmatrix x_2 + 2x_3 \ x_2 + 3x_3 \ x_3 endbmatrix = beginbmatrix 0\ 0\ 0 endbmatrix $$
                                        $$ x_3 = 0 implies x_2 + 3x_3 = x_2 + 0 = 0 implies x_2 = 0 $$
                                        our assumption was $x_1 =1$
                                        $$u_1 = beginbmatrix1 \ 0 \0 endbmatrix $$
                                        $$u_2 = beginbmatrix-1 \ 0 \0 endbmatrix $$
                                        testing this in computer



                                        A = np.array([[1,1,2],[0,1,3],[0,0,2]])
                                        vals, vecs = LA.eig(A)
                                        test = np.sqrt(35)/5
                                        test1 = [1/test, (3/5)/test, (1/5)/test]

                                        Out[2]:
                                        array([[ 1.00000000e+00, -1.00000000e+00, 8.45154255e-01],
                                        [ 0.00000000e+00, 2.22044605e-16, 5.07092553e-01],
                                        [ 0.00000000e+00, 0.00000000e+00, 1.69030851e-01]])

                                        test1
                                        Out[3]: [0.8451542547285166, 0.50709255283711, 0.16903085094570333]






                                        share|cite|improve this answer















                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Aug 3 at 18:33


























                                        answered Aug 2 at 13:54









                                        RHowe

                                        825715




                                        825715




















                                            up vote
                                            0
                                            down vote













                                            There is actually just one genuine eigenvector for the eigenvalue $1.$ There are "generalized" eigenvectors, which lead to the Jordan Normal Form. For the middle column of my matrix $R,$ I chose from among the vectors $v$ for which $(A-I)^2 v = 0$ but $(A-I) v neq 0.$ Then the first column, a genuine eigenvector, is $u =(A-I) v $



                                            $$
                                            R =
                                            left(
                                            beginarrayccc
                                            1 & 0 & 5 \
                                            0 & 1 & 3 \
                                            0 & 0 & 1
                                            endarray
                                            right)
                                            $$



                                            The Jordan form is $ R^-1 A R = J$ and has a special shape.



                                            $$
                                            left(
                                            beginarrayccc
                                            1 & 0 & -5 \
                                            0 & 1 & -3 \
                                            0 & 0 & 1
                                            endarray
                                            right)
                                            left(
                                            beginarrayccc
                                            1 & 1 & 2 \
                                            0 & 1 & 3 \
                                            0 & 0 & 2
                                            endarray
                                            right)
                                            left(
                                            beginarrayccc
                                            1 & 0 & 5 \
                                            0 & 1 & 3 \
                                            0 & 0 & 1
                                            endarray
                                            right)=
                                            left(
                                            beginarrayccc
                                            1 & 1 & 0 \
                                            0 & 1 & 0 \
                                            0 & 0 & 2
                                            endarray
                                            right)
                                            $$



                                            For applications such as finding $e^At$ it is the reverse identity that is important, $RJR^-1 = A,$



                                            $$
                                            left(
                                            beginarrayccc
                                            1 & 0 & 5 \
                                            0 & 1 & 3 \
                                            0 & 0 & 1
                                            endarray
                                            right)
                                            left(
                                            beginarrayccc
                                            1 & 1 & 0 \
                                            0 & 1 & 0 \
                                            0 & 0 & 2
                                            endarray
                                            right)
                                            left(
                                            beginarrayccc
                                            1 & 0 & -5 \
                                            0 & 1 & -3 \
                                            0 & 0 & 1
                                            endarray
                                            right) =
                                            left(
                                            beginarrayccc
                                            1 & 1 & 2 \
                                            0 & 1 & 3 \
                                            0 & 0 & 2
                                            endarray
                                            right)
                                            $$






                                            share|cite|improve this answer

























                                              up vote
                                              0
                                              down vote













                                              There is actually just one genuine eigenvector for the eigenvalue $1.$ There are "generalized" eigenvectors, which lead to the Jordan Normal Form. For the middle column of my matrix $R,$ I chose from among the vectors $v$ for which $(A-I)^2 v = 0$ but $(A-I) v neq 0.$ Then the first column, a genuine eigenvector, is $u =(A-I) v $



                                              $$
                                              R =
                                              left(
                                              beginarrayccc
                                              1 & 0 & 5 \
                                              0 & 1 & 3 \
                                              0 & 0 & 1
                                              endarray
                                              right)
                                              $$



                                              The Jordan form is $ R^-1 A R = J$ and has a special shape.



                                              $$
                                              left(
                                              beginarrayccc
                                              1 & 0 & -5 \
                                              0 & 1 & -3 \
                                              0 & 0 & 1
                                              endarray
                                              right)
                                              left(
                                              beginarrayccc
                                              1 & 1 & 2 \
                                              0 & 1 & 3 \
                                              0 & 0 & 2
                                              endarray
                                              right)
                                              left(
                                              beginarrayccc
                                              1 & 0 & 5 \
                                              0 & 1 & 3 \
                                              0 & 0 & 1
                                              endarray
                                              right)=
                                              left(
                                              beginarrayccc
                                              1 & 1 & 0 \
                                              0 & 1 & 0 \
                                              0 & 0 & 2
                                              endarray
                                              right)
                                              $$



                                              For applications such as finding $e^At$ it is the reverse identity that is important, $RJR^-1 = A,$



                                              $$
                                              left(
                                              beginarrayccc
                                              1 & 0 & 5 \
                                              0 & 1 & 3 \
                                              0 & 0 & 1
                                              endarray
                                              right)
                                              left(
                                              beginarrayccc
                                              1 & 1 & 0 \
                                              0 & 1 & 0 \
                                              0 & 0 & 2
                                              endarray
                                              right)
                                              left(
                                              beginarrayccc
                                              1 & 0 & -5 \
                                              0 & 1 & -3 \
                                              0 & 0 & 1
                                              endarray
                                              right) =
                                              left(
                                              beginarrayccc
                                              1 & 1 & 2 \
                                              0 & 1 & 3 \
                                              0 & 0 & 2
                                              endarray
                                              right)
                                              $$






                                              share|cite|improve this answer























                                                up vote
                                                0
                                                down vote










                                                up vote
                                                0
                                                down vote









                                                There is actually just one genuine eigenvector for the eigenvalue $1.$ There are "generalized" eigenvectors, which lead to the Jordan Normal Form. For the middle column of my matrix $R,$ I chose from among the vectors $v$ for which $(A-I)^2 v = 0$ but $(A-I) v neq 0.$ Then the first column, a genuine eigenvector, is $u =(A-I) v $



                                                $$
                                                R =
                                                left(
                                                beginarrayccc
                                                1 & 0 & 5 \
                                                0 & 1 & 3 \
                                                0 & 0 & 1
                                                endarray
                                                right)
                                                $$



                                                The Jordan form is $ R^-1 A R = J$ and has a special shape.



                                                $$
                                                left(
                                                beginarrayccc
                                                1 & 0 & -5 \
                                                0 & 1 & -3 \
                                                0 & 0 & 1
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 1 & 2 \
                                                0 & 1 & 3 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 0 & 5 \
                                                0 & 1 & 3 \
                                                0 & 0 & 1
                                                endarray
                                                right)=
                                                left(
                                                beginarrayccc
                                                1 & 1 & 0 \
                                                0 & 1 & 0 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                $$



                                                For applications such as finding $e^At$ it is the reverse identity that is important, $RJR^-1 = A,$



                                                $$
                                                left(
                                                beginarrayccc
                                                1 & 0 & 5 \
                                                0 & 1 & 3 \
                                                0 & 0 & 1
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 1 & 0 \
                                                0 & 1 & 0 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 0 & -5 \
                                                0 & 1 & -3 \
                                                0 & 0 & 1
                                                endarray
                                                right) =
                                                left(
                                                beginarrayccc
                                                1 & 1 & 2 \
                                                0 & 1 & 3 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                $$






                                                share|cite|improve this answer













                                                There is actually just one genuine eigenvector for the eigenvalue $1.$ There are "generalized" eigenvectors, which lead to the Jordan Normal Form. For the middle column of my matrix $R,$ I chose from among the vectors $v$ for which $(A-I)^2 v = 0$ but $(A-I) v neq 0.$ Then the first column, a genuine eigenvector, is $u =(A-I) v $



                                                $$
                                                R =
                                                left(
                                                beginarrayccc
                                                1 & 0 & 5 \
                                                0 & 1 & 3 \
                                                0 & 0 & 1
                                                endarray
                                                right)
                                                $$



                                                The Jordan form is $ R^-1 A R = J$ and has a special shape.



                                                $$
                                                left(
                                                beginarrayccc
                                                1 & 0 & -5 \
                                                0 & 1 & -3 \
                                                0 & 0 & 1
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 1 & 2 \
                                                0 & 1 & 3 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 0 & 5 \
                                                0 & 1 & 3 \
                                                0 & 0 & 1
                                                endarray
                                                right)=
                                                left(
                                                beginarrayccc
                                                1 & 1 & 0 \
                                                0 & 1 & 0 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                $$



                                                For applications such as finding $e^At$ it is the reverse identity that is important, $RJR^-1 = A,$



                                                $$
                                                left(
                                                beginarrayccc
                                                1 & 0 & 5 \
                                                0 & 1 & 3 \
                                                0 & 0 & 1
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 1 & 0 \
                                                0 & 1 & 0 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                left(
                                                beginarrayccc
                                                1 & 0 & -5 \
                                                0 & 1 & -3 \
                                                0 & 0 & 1
                                                endarray
                                                right) =
                                                left(
                                                beginarrayccc
                                                1 & 1 & 2 \
                                                0 & 1 & 3 \
                                                0 & 0 & 2
                                                endarray
                                                right)
                                                $$







                                                share|cite|improve this answer













                                                share|cite|improve this answer



                                                share|cite|improve this answer











                                                answered Aug 2 at 18:09









                                                Will Jagy

                                                96.7k594195




                                                96.7k594195






















                                                     

                                                    draft saved


                                                    draft discarded


























                                                     


                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function ()
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870070%2ffinding-out-eigenvalues-and-eigenvectors%23new-answer', 'question_page');

                                                    );

                                                    Post as a guest













































































                                                    Comments

                                                    Popular posts from this blog

                                                    What is the equation of a 3D cone with generalised tilt?

                                                    Color the edges and diagonals of a regular polygon

                                                    Relationship between determinant of matrix and determinant of adjoint?