Hilbert manifold decomposition into infinite-dimensional ellipsoids
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.
Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?
Thanks in advance!
hilbert-spaces conic-sections
add a comment |Â
up vote
1
down vote
favorite
Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.
Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?
Thanks in advance!
hilbert-spaces conic-sections
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.
Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?
Thanks in advance!
hilbert-spaces conic-sections
Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.
Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?
Thanks in advance!
hilbert-spaces conic-sections
edited Aug 4 at 5:10
asked Aug 3 at 3:27
Multivariablecalculus
488313
488313
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870700%2fhilbert-manifold-decomposition-into-infinite-dimensional-ellipsoids%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password