Hilbert manifold decomposition into infinite-dimensional ellipsoids

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.




Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?




Thanks in advance!







share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.




    Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?




    Thanks in advance!







    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.




      Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?




      Thanks in advance!







      share|cite|improve this question













      Let $X$ be a Hilbert manifold and $mathcalU_alpha$ an open subet of $X$, with a local coordinate chart $(mathcalU_alpha,phi_alpha)$ such that $X:=bigcup_alphain AmathcalU_alpha.$ Suppose the chart is given by $$phi_alpha:mathcalU_alphatomathbbR^infty \ gamma_alphamapsto (phi_alpha^1,phi_alpha^2,...).$$ Also suppose the local coordinates satisfy $$sum_k=1^inftyc_k^2||phi_alpha^k||_X^2=R_alpha^2$$ for $c_ine 0,i=1,...$.




      Then is $X$ the union of infinite-dimensional ellipsoids embedded in $mathbbR^infty$ over $alphain A$?




      Thanks in advance!









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 4 at 5:10
























      asked Aug 3 at 3:27









      Multivariablecalculus

      488313




      488313

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870700%2fhilbert-manifold-decomposition-into-infinite-dimensional-ellipsoids%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870700%2fhilbert-manifold-decomposition-into-infinite-dimensional-ellipsoids%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?