How to prove $(arightarrow negb)rightarrow(neg(b rightarrow c)rightarrow nega)$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I'm trying to prove this by using Hilbert systems:
(CA1) ⊢ A → (B → A)
(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))
(CA3) ⊢ (¬A → ¬B) → (B → A)
(MP) A, A → B ⊢ B
Is there a specific approach to these things that i'm not seeing ?
here is my approach but it's always hard for me to carry on from it :
From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.
Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.
logic propositional-calculus
add a comment |Â
up vote
1
down vote
favorite
I'm trying to prove this by using Hilbert systems:
(CA1) ⊢ A → (B → A)
(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))
(CA3) ⊢ (¬A → ¬B) → (B → A)
(MP) A, A → B ⊢ B
Is there a specific approach to these things that i'm not seeing ?
here is my approach but it's always hard for me to carry on from it :
From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.
Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.
logic propositional-calculus
What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29
I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm trying to prove this by using Hilbert systems:
(CA1) ⊢ A → (B → A)
(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))
(CA3) ⊢ (¬A → ¬B) → (B → A)
(MP) A, A → B ⊢ B
Is there a specific approach to these things that i'm not seeing ?
here is my approach but it's always hard for me to carry on from it :
From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.
Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.
logic propositional-calculus
I'm trying to prove this by using Hilbert systems:
(CA1) ⊢ A → (B → A)
(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))
(CA3) ⊢ (¬A → ¬B) → (B → A)
(MP) A, A → B ⊢ B
Is there a specific approach to these things that i'm not seeing ?
here is my approach but it's always hard for me to carry on from it :
From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.
Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.
logic propositional-calculus
asked Jul 23 at 11:50
user3133165
1618
1618
What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29
I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42
add a comment |Â
What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29
I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42
What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29
What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29
I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42
I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):
% -------- Comments from original proof --------
% Proof 1 at 31.95 (+ 11.73) seconds.
% Length of proof is 44.
% Level of proof is 16.
% Maximum clause weight is 24.
% Given clauses 3400.
1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
2 -P(C(x,y)) | -P(x) | P(y). [assumption].
3 P(C(x,C(y,x))). [assumption].
4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
29514 $F. [resolve(29513,a,6,a)].
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):
% -------- Comments from original proof --------
% Proof 1 at 31.95 (+ 11.73) seconds.
% Length of proof is 44.
% Level of proof is 16.
% Maximum clause weight is 24.
% Given clauses 3400.
1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
2 -P(C(x,y)) | -P(x) | P(y). [assumption].
3 P(C(x,C(y,x))). [assumption].
4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
29514 $F. [resolve(29513,a,6,a)].
add a comment |Â
up vote
1
down vote
Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):
% -------- Comments from original proof --------
% Proof 1 at 31.95 (+ 11.73) seconds.
% Length of proof is 44.
% Level of proof is 16.
% Maximum clause weight is 24.
% Given clauses 3400.
1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
2 -P(C(x,y)) | -P(x) | P(y). [assumption].
3 P(C(x,C(y,x))). [assumption].
4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
29514 $F. [resolve(29513,a,6,a)].
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):
% -------- Comments from original proof --------
% Proof 1 at 31.95 (+ 11.73) seconds.
% Length of proof is 44.
% Level of proof is 16.
% Maximum clause weight is 24.
% Given clauses 3400.
1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
2 -P(C(x,y)) | -P(x) | P(y). [assumption].
3 P(C(x,C(y,x))). [assumption].
4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
29514 $F. [resolve(29513,a,6,a)].
Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):
% -------- Comments from original proof --------
% Proof 1 at 31.95 (+ 11.73) seconds.
% Length of proof is 44.
% Level of proof is 16.
% Maximum clause weight is 24.
% Given clauses 3400.
1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
2 -P(C(x,y)) | -P(x) | P(y). [assumption].
3 P(C(x,C(y,x))). [assumption].
4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
29514 $F. [resolve(29513,a,6,a)].
answered Jul 23 at 21:29
Doug Spoonwood
7,65012042
7,65012042
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860265%2fhow-to-prove-a-rightarrow-negb-rightarrow-negb-rightarrow-c-rightarr%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29
I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42