How to prove $(arightarrow negb)rightarrow(neg(b rightarrow c)rightarrow nega)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












I'm trying to prove this by using Hilbert systems:



(CA1) ⊢ A → (B → A)



(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))



(CA3) ⊢ (¬A → ¬B) → (B → A)



(MP) A, A → B ⊢ B



Is there a specific approach to these things that i'm not seeing ?



here is my approach but it's always hard for me to carry on from it :



From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.



Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.







share|cite|improve this question



















  • What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
    – JavaMan
    Jul 23 at 13:29










  • I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
    – user3133165
    Jul 23 at 13:42














up vote
1
down vote

favorite












I'm trying to prove this by using Hilbert systems:



(CA1) ⊢ A → (B → A)



(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))



(CA3) ⊢ (¬A → ¬B) → (B → A)



(MP) A, A → B ⊢ B



Is there a specific approach to these things that i'm not seeing ?



here is my approach but it's always hard for me to carry on from it :



From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.



Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.







share|cite|improve this question



















  • What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
    – JavaMan
    Jul 23 at 13:29










  • I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
    – user3133165
    Jul 23 at 13:42












up vote
1
down vote

favorite









up vote
1
down vote

favorite











I'm trying to prove this by using Hilbert systems:



(CA1) ⊢ A → (B → A)



(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))



(CA3) ⊢ (¬A → ¬B) → (B → A)



(MP) A, A → B ⊢ B



Is there a specific approach to these things that i'm not seeing ?



here is my approach but it's always hard for me to carry on from it :



From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.



Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.







share|cite|improve this question











I'm trying to prove this by using Hilbert systems:



(CA1) ⊢ A → (B → A)



(CA2) ⊢ (A → (B → C)) → ((A → B) → (A → C))



(CA3) ⊢ (¬A → ¬B) → (B → A)



(MP) A, A → B ⊢ B



Is there a specific approach to these things that i'm not seeing ?



here is my approach but it's always hard for me to carry on from it :



From the given i see $Phi=arightarrownegbvdash neg(brightarrow c)rightarrow nega.$ By using the deduction theorem we recieve $Phicup neg(brightarrow c) =arightarrownegb,neg(brightarrow c)vdashneg a$ which needs to be proved to show that the original logic proposition is true.



Here i get stuck ,i try to solve this by saying that $nega$ then i try to see the previous steps that i need to to make to reach $nega$ for example if i do modus ponens on $varphi_1=neg(brightarrow c)$ and $varphi_2=neg(brightarrow c)rightarrow nega$ i will reach the end of the proof, but i think this is a bad approach for this.
I need help with ways to approach these kind of proofs.









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 23 at 11:50









user3133165

1618




1618











  • What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
    – JavaMan
    Jul 23 at 13:29










  • I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
    – user3133165
    Jul 23 at 13:42
















  • What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
    – JavaMan
    Jul 23 at 13:29










  • I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
    – user3133165
    Jul 23 at 13:42















What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29




What do you mean by "Prove $ p to q$"? Presumably you trying to show that $p to q$ is a tautology?
– JavaMan
Jul 23 at 13:29












I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42




I think so, sorry but the problem only states that to prove the given proposition by using those 3 axioms
– user3133165
Jul 23 at 13:42










1 Answer
1






active

oldest

votes

















up vote
1
down vote













Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):



% -------- Comments from original proof --------
% Proof 1 at 31.95 (+ 11.73) seconds.
% Length of proof is 44.
% Level of proof is 16.
% Maximum clause weight is 24.
% Given clauses 3400.

1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
2 -P(C(x,y)) | -P(x) | P(y). [assumption].
3 P(C(x,C(y,x))). [assumption].
4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
29514 $F. [resolve(29513,a,6,a)].





share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860265%2fhow-to-prove-a-rightarrow-negb-rightarrow-negb-rightarrow-c-rightarr%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):



    % -------- Comments from original proof --------
    % Proof 1 at 31.95 (+ 11.73) seconds.
    % Length of proof is 44.
    % Level of proof is 16.
    % Maximum clause weight is 24.
    % Given clauses 3400.

    1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
    2 -P(C(x,y)) | -P(x) | P(y). [assumption].
    3 P(C(x,C(y,x))). [assumption].
    4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
    5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
    6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
    7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
    8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
    9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
    10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
    11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
    12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
    14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
    17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
    18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
    26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
    44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
    48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
    71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
    159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
    160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
    166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
    197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
    815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
    835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
    841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
    842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
    918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
    1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
    3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
    4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
    4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
    4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
    4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
    7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
    7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
    8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
    19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
    19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
    20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
    20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
    21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
    29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
    29514 $F. [resolve(29513,a,6,a)].





    share|cite|improve this answer

























      up vote
      1
      down vote













      Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):



      % -------- Comments from original proof --------
      % Proof 1 at 31.95 (+ 11.73) seconds.
      % Length of proof is 44.
      % Level of proof is 16.
      % Maximum clause weight is 24.
      % Given clauses 3400.

      1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
      2 -P(C(x,y)) | -P(x) | P(y). [assumption].
      3 P(C(x,C(y,x))). [assumption].
      4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
      5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
      6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
      7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
      8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
      9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
      10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
      11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
      12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
      14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
      17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
      18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
      26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
      44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
      48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
      71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
      159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
      160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
      166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
      197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
      815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
      835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
      841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
      842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
      918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
      1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
      3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
      4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
      4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
      4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
      4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
      7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
      7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
      8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
      19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
      19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
      20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
      20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
      21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
      29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
      29514 $F. [resolve(29513,a,6,a)].





      share|cite|improve this answer























        up vote
        1
        down vote










        up vote
        1
        down vote









        Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):



        % -------- Comments from original proof --------
        % Proof 1 at 31.95 (+ 11.73) seconds.
        % Length of proof is 44.
        % Level of proof is 16.
        % Maximum clause weight is 24.
        % Given clauses 3400.

        1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
        2 -P(C(x,y)) | -P(x) | P(y). [assumption].
        3 P(C(x,C(y,x))). [assumption].
        4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
        5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
        6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
        7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
        8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
        9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
        10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
        11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
        12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
        14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
        17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
        18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
        26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
        44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
        48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
        71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
        159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
        160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
        166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
        197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
        815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
        835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
        841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
        842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
        918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
        1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
        3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
        4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
        4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
        4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
        4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
        7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
        7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
        8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
        19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
        19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
        20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
        20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
        21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
        29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
        29514 $F. [resolve(29513,a,6,a)].





        share|cite|improve this answer













        Here's a proof of a first-order proof using hyperresolution which correlates to a proof using condensed detachment from the theorem prover written by William McCune at Argonne National Laboratory. Also, instead of using infix notation, it uses prefix notation and letters. (x$rightarrow$y) translates to C(x, y) and $lnot$x translates to N(x):



        % -------- Comments from original proof --------
        % Proof 1 at 31.95 (+ 11.73) seconds.
        % Length of proof is 44.
        % Level of proof is 16.
        % Maximum clause weight is 24.
        % Given clauses 3400.

        1 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))) # label(non_clause) # label(goal). [goal].
        2 -P(C(x,y)) | -P(x) | P(y). [assumption].
        3 P(C(x,C(y,x))). [assumption].
        4 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
        5 P(C(C(N(x),N(y)),C(y,x))). [assumption].
        6 -P(C(C(c1,N(c2)),C(N(C(c2,c3)),N(c1)))). [deny(1)].
        7 P(C(x,C(y,C(z,y)))). [hyper(2,a,3,a,b,3,a)].
        8 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(2,a,4,a,b,4,a)].
        9 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(2,a,3,a,b,4,a)].
        10 P(C(C(x,y),C(x,x))). [hyper(2,a,4,a,b,3,a)].
        11 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(2,a,4,a,b,5,a)].
        12 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(2,a,3,a,b,5,a)].
        14 P(C(x,C(y,C(z,C(u,z))))). [hyper(2,a,3,a,b,7,a)].
        17 P(C(x,x)). [hyper(2,a,10,a,b,7,a)].
        18 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(2,a,4,a,b,17,a)].
        26 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(2,a,8,a,b,7,a)].
        44 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(2,a,8,a,b,14,a)].
        48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(2,a,8,a,b,9,a)].
        71 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(2,a,4,a,b,12,a)].
        159 P(C(N(x),C(x,y))). [hyper(2,a,26,a,b,12,a)].
        160 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(2,a,26,a,b,9,a)].
        166 P(C(x,C(N(y),C(y,z)))). [hyper(2,a,3,a,b,159,a)].
        197 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(2,a,18,a,b,166,a)].
        815 P(C(C(C(x,y),z),C(y,z))). [hyper(2,a,44,a,b,160,a)].
        835 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(2,a,3,a,b,815,a)].
        841 P(C(x,C(C(x,y),y))). [hyper(2,a,815,a,b,18,a)].
        842 P(C(x,C(C(N(y),N(x)),y))). [hyper(2,a,815,a,b,11,a)].
        918 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(2,a,160,a,b,841,a)].
        1299 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(2,a,4,a,b,842,a)].
        3180 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(2,a,48,a,b,835,a)].
        4594 P(C(N(N(x)),x)). [hyper(2,a,197,a,b,1299,a)].
        4644 P(C(N(N(x)),C(C(x,y),y))). [hyper(2,a,918,a,b,4594,a)].
        4672 P(C(x,N(N(x)))). [hyper(2,a,5,a,b,4594,a)].
        4728 P(C(C(x,y),C(x,N(N(y))))). [hyper(2,a,160,a,b,4672,a)].
        7574 P(C(N(x),N(N(C(x,y))))). [hyper(2,a,197,a,b,4728,a)].
        7977 P(C(N(C(x,y)),x)). [hyper(2,a,5,a,b,7574,a)].
        8000 P(C(N(C(x,y)),C(C(x,z),z))). [hyper(2,a,918,a,b,7977,a)].
        19593 P(C(C(x,y),C(N(C(x,z)),y))). [hyper(2,a,3180,a,b,8000,a)].
        19609 P(C(C(x,y),C(N(N(x)),y))). [hyper(2,a,3180,a,b,4644,a)].
        20519 P(C(C(x,N(y)),C(y,N(x)))). [hyper(2,a,71,a,b,19609,a)].
        20805 P(C(x,C(C(y,N(x)),N(y)))). [hyper(2,a,3180,a,b,20519,a)].
        21589 P(C(N(C(x,y)),C(C(z,N(x)),N(z)))). [hyper(2,a,19593,a,b,20805,a)].
        29513 P(C(C(x,N(y)),C(N(C(y,z)),N(x)))). [hyper(2,a,3180,a,b,21589,a)].
        29514 $F. [resolve(29513,a,6,a)].






        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 23 at 21:29









        Doug Spoonwood

        7,65012042




        7,65012042






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860265%2fhow-to-prove-a-rightarrow-negb-rightarrow-negb-rightarrow-c-rightarr%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?