If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?




Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?







share|cite|improve this question





















  • This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
    – JavaMan
    Jul 26 at 2:34











  • And of course, above, I mean to say if $f(x) is even, not odd!
    – JavaMan
    Jul 26 at 2:50














up vote
0
down vote

favorite













If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?




Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?







share|cite|improve this question





















  • This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
    – JavaMan
    Jul 26 at 2:34











  • And of course, above, I mean to say if $f(x) is even, not odd!
    – JavaMan
    Jul 26 at 2:50












up vote
0
down vote

favorite









up vote
0
down vote

favorite












If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?




Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?







share|cite|improve this question














If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?




Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 26 at 2:23









Parcly Taxel

33.5k136588




33.5k136588









asked Jul 26 at 2:23









Vera

11




11











  • This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
    – JavaMan
    Jul 26 at 2:34











  • And of course, above, I mean to say if $f(x) is even, not odd!
    – JavaMan
    Jul 26 at 2:50
















  • This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
    – JavaMan
    Jul 26 at 2:34











  • And of course, above, I mean to say if $f(x) is even, not odd!
    – JavaMan
    Jul 26 at 2:50















This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34





This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34













And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50




And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50










3 Answers
3






active

oldest

votes

















up vote
1
down vote














and $int_-infty^infty f(x)dx = 1$




It is not clear from the question whether this is a given condition or not. Assuming it is, note that:



$$
beginalign
1 &= int_-infty^infty f(x)dx \
&= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
&= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
&= 2 cdot 0.95 - int_-k^k f(x)dx
endalign
$$






[ EDIT ]   For a visualization of the above:

$$
underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
$$






share|cite|improve this answer






























    up vote
    0
    down vote













    I interpret the question as $f$ is an even function which is a densify function, then we have



    $$int_-infty^0 f(x) , dx = 0.5$$



    and since $$int_-infty^k f(x) , dx= 0.95$$



    and $f$ is positive everywhere, we have $k>0$.



    $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$



    $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$



    subtracting the difference,



    $$int_k^infty f(x) , dx = 0.05$$



    Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$



    using the information that the function is even,



    $$int_-infty^-kf(x) , dx =0.05$$



    Hence $$int_-k^k f(x) , dx =0.9$$



    $k$ need not be $0.05$, for example, consider the standard normal distribution.



    Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.






    share|cite|improve this answer






























      up vote
      0
      down vote













      so if $int_-infty^inftyf(x)dx=1$



      then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$



      and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$



      so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$



      again since $f(x)=f(-x)$



      $int_0^inftyf(-x)dx=int_0^inftyf(x)dx$



      so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.



      now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$



      and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$



      It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$






      share|cite|improve this answer





















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863000%2fif-int-inftyk-fxdx-95-and-fx-is-positive-even-then-int-k%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote














        and $int_-infty^infty f(x)dx = 1$




        It is not clear from the question whether this is a given condition or not. Assuming it is, note that:



        $$
        beginalign
        1 &= int_-infty^infty f(x)dx \
        &= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
        &= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
        &= 2 cdot 0.95 - int_-k^k f(x)dx
        endalign
        $$






        [ EDIT ]   For a visualization of the above:

        $$
        underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
        $$






        share|cite|improve this answer



























          up vote
          1
          down vote














          and $int_-infty^infty f(x)dx = 1$




          It is not clear from the question whether this is a given condition or not. Assuming it is, note that:



          $$
          beginalign
          1 &= int_-infty^infty f(x)dx \
          &= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
          &= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
          &= 2 cdot 0.95 - int_-k^k f(x)dx
          endalign
          $$






          [ EDIT ]   For a visualization of the above:

          $$
          underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
          $$






          share|cite|improve this answer

























            up vote
            1
            down vote










            up vote
            1
            down vote










            and $int_-infty^infty f(x)dx = 1$




            It is not clear from the question whether this is a given condition or not. Assuming it is, note that:



            $$
            beginalign
            1 &= int_-infty^infty f(x)dx \
            &= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
            &= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
            &= 2 cdot 0.95 - int_-k^k f(x)dx
            endalign
            $$






            [ EDIT ]   For a visualization of the above:

            $$
            underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
            $$






            share|cite|improve this answer
















            and $int_-infty^infty f(x)dx = 1$




            It is not clear from the question whether this is a given condition or not. Assuming it is, note that:



            $$
            beginalign
            1 &= int_-infty^infty f(x)dx \
            &= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
            &= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
            &= 2 cdot 0.95 - int_-k^k f(x)dx
            endalign
            $$






            [ EDIT ]   For a visualization of the above:

            $$
            underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
            $$







            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Jul 26 at 4:16


























            answered Jul 26 at 2:37









            dxiv

            53.9k64796




            53.9k64796




















                up vote
                0
                down vote













                I interpret the question as $f$ is an even function which is a densify function, then we have



                $$int_-infty^0 f(x) , dx = 0.5$$



                and since $$int_-infty^k f(x) , dx= 0.95$$



                and $f$ is positive everywhere, we have $k>0$.



                $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$



                $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$



                subtracting the difference,



                $$int_k^infty f(x) , dx = 0.05$$



                Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$



                using the information that the function is even,



                $$int_-infty^-kf(x) , dx =0.05$$



                Hence $$int_-k^k f(x) , dx =0.9$$



                $k$ need not be $0.05$, for example, consider the standard normal distribution.



                Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.






                share|cite|improve this answer



























                  up vote
                  0
                  down vote













                  I interpret the question as $f$ is an even function which is a densify function, then we have



                  $$int_-infty^0 f(x) , dx = 0.5$$



                  and since $$int_-infty^k f(x) , dx= 0.95$$



                  and $f$ is positive everywhere, we have $k>0$.



                  $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$



                  $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$



                  subtracting the difference,



                  $$int_k^infty f(x) , dx = 0.05$$



                  Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$



                  using the information that the function is even,



                  $$int_-infty^-kf(x) , dx =0.05$$



                  Hence $$int_-k^k f(x) , dx =0.9$$



                  $k$ need not be $0.05$, for example, consider the standard normal distribution.



                  Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.






                  share|cite|improve this answer

























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    I interpret the question as $f$ is an even function which is a densify function, then we have



                    $$int_-infty^0 f(x) , dx = 0.5$$



                    and since $$int_-infty^k f(x) , dx= 0.95$$



                    and $f$ is positive everywhere, we have $k>0$.



                    $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$



                    $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$



                    subtracting the difference,



                    $$int_k^infty f(x) , dx = 0.05$$



                    Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$



                    using the information that the function is even,



                    $$int_-infty^-kf(x) , dx =0.05$$



                    Hence $$int_-k^k f(x) , dx =0.9$$



                    $k$ need not be $0.05$, for example, consider the standard normal distribution.



                    Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.






                    share|cite|improve this answer















                    I interpret the question as $f$ is an even function which is a densify function, then we have



                    $$int_-infty^0 f(x) , dx = 0.5$$



                    and since $$int_-infty^k f(x) , dx= 0.95$$



                    and $f$ is positive everywhere, we have $k>0$.



                    $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$



                    $$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$



                    subtracting the difference,



                    $$int_k^infty f(x) , dx = 0.05$$



                    Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$



                    using the information that the function is even,



                    $$int_-infty^-kf(x) , dx =0.05$$



                    Hence $$int_-k^k f(x) , dx =0.9$$



                    $k$ need not be $0.05$, for example, consider the standard normal distribution.



                    Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.







                    share|cite|improve this answer















                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jul 26 at 3:02


























                    answered Jul 26 at 2:42









                    Siong Thye Goh

                    77.1k134794




                    77.1k134794




















                        up vote
                        0
                        down vote













                        so if $int_-infty^inftyf(x)dx=1$



                        then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$



                        and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$



                        so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$



                        again since $f(x)=f(-x)$



                        $int_0^inftyf(-x)dx=int_0^inftyf(x)dx$



                        so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.



                        now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$



                        and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$



                        It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          so if $int_-infty^inftyf(x)dx=1$



                          then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$



                          and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$



                          so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$



                          again since $f(x)=f(-x)$



                          $int_0^inftyf(-x)dx=int_0^inftyf(x)dx$



                          so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.



                          now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$



                          and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$



                          It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            so if $int_-infty^inftyf(x)dx=1$



                            then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$



                            and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$



                            so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$



                            again since $f(x)=f(-x)$



                            $int_0^inftyf(-x)dx=int_0^inftyf(x)dx$



                            so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.



                            now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$



                            and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$



                            It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$






                            share|cite|improve this answer













                            so if $int_-infty^inftyf(x)dx=1$



                            then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$



                            and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$



                            so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$



                            again since $f(x)=f(-x)$



                            $int_0^inftyf(-x)dx=int_0^inftyf(x)dx$



                            so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.



                            now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$



                            and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$



                            It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 27 at 11:47









                            Henry Lee

                            49210




                            49210






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863000%2fif-int-inftyk-fxdx-95-and-fx-is-positive-even-then-int-k%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                Comments

                                Popular posts from this blog

                                What is the equation of a 3D cone with generalised tilt?

                                Color the edges and diagonals of a regular polygon

                                Relationship between determinant of matrix and determinant of adjoint?