If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?
Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?
integration
add a comment |Â
up vote
0
down vote
favorite
If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?
Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?
integration
This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34
And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?
Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?
integration
If $int_-infty^k f(x)dx = .95$ and $f(x)$ is positive even, then $int_-k^k f(x)dx = .10$?
Does this seem correct? Or is there not enough information to make the last conclusion?
Say for all real $x$, $f(x) > 0$, $f(x) = f(-x)$, and $int_-infty^infty f(x)dx = 1$. If $int_-infty^k f(x)dx = .95$, then $int_-k^k f(x)dx = .10?$.
Can I assume $k=.05$?
integration
edited Jul 26 at 2:23


Parcly Taxel
33.5k136588
33.5k136588
asked Jul 26 at 2:23
Vera
11
11
This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34
And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50
add a comment |Â
This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34
And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50
This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34
This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34
And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50
And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
1
down vote
and $int_-infty^infty f(x)dx = 1$
It is not clear from the question whether this is a given condition or not. Assuming it is, note that:
$$
beginalign
1 &= int_-infty^infty f(x)dx \
&= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
&= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
&= 2 cdot 0.95 - int_-k^k f(x)dx
endalign
$$
[ EDIT ] Â For a visualization of the above:
$$
underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
$$
add a comment |Â
up vote
0
down vote
I interpret the question as $f$ is an even function which is a densify function, then we have
$$int_-infty^0 f(x) , dx = 0.5$$
and since $$int_-infty^k f(x) , dx= 0.95$$
and $f$ is positive everywhere, we have $k>0$.
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$
subtracting the difference,
$$int_k^infty f(x) , dx = 0.05$$
Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$
using the information that the function is even,
$$int_-infty^-kf(x) , dx =0.05$$
Hence $$int_-k^k f(x) , dx =0.9$$
$k$ need not be $0.05$, for example, consider the standard normal distribution.
Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.
add a comment |Â
up vote
0
down vote
so if $int_-infty^inftyf(x)dx=1$
then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$
and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$
so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$
again since $f(x)=f(-x)$
$int_0^inftyf(-x)dx=int_0^inftyf(x)dx$
so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.
now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$
and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$
It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
and $int_-infty^infty f(x)dx = 1$
It is not clear from the question whether this is a given condition or not. Assuming it is, note that:
$$
beginalign
1 &= int_-infty^infty f(x)dx \
&= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
&= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
&= 2 cdot 0.95 - int_-k^k f(x)dx
endalign
$$
[ EDIT ] Â For a visualization of the above:
$$
underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
$$
add a comment |Â
up vote
1
down vote
and $int_-infty^infty f(x)dx = 1$
It is not clear from the question whether this is a given condition or not. Assuming it is, note that:
$$
beginalign
1 &= int_-infty^infty f(x)dx \
&= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
&= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
&= 2 cdot 0.95 - int_-k^k f(x)dx
endalign
$$
[ EDIT ] Â For a visualization of the above:
$$
underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
and $int_-infty^infty f(x)dx = 1$
It is not clear from the question whether this is a given condition or not. Assuming it is, note that:
$$
beginalign
1 &= int_-infty^infty f(x)dx \
&= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
&= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
&= 2 cdot 0.95 - int_-k^k f(x)dx
endalign
$$
[ EDIT ] Â For a visualization of the above:
$$
underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
$$
and $int_-infty^infty f(x)dx = 1$
It is not clear from the question whether this is a given condition or not. Assuming it is, note that:
$$
beginalign
1 &= int_-infty^infty f(x)dx \
&= int_-infty^k f(x)dx + int_-k^infty f(x)dx - int_-k^k f(x)dx \
&= 2 cdot int_-infty^k f(x)dx - int_-k^k f(x)dx \
&= 2 cdot 0.95 - int_-k^k f(x)dx
endalign
$$
[ EDIT ] Â For a visualization of the above:
$$
underbracerlapoverbracephantomfrac00-inftyquadquadquadquadquad -kquadquadquad 0quadquadquad k^large=0.95 overline-inftyquadquadquadquadquad underbrace-kquadquadquad 0quadquadquad kquadquadquadquadquad +infty;_large=0.95 ; textbecause ;f; textis even_large=1 \
$$
edited Jul 26 at 4:16
answered Jul 26 at 2:37


dxiv
53.9k64796
53.9k64796
add a comment |Â
add a comment |Â
up vote
0
down vote
I interpret the question as $f$ is an even function which is a densify function, then we have
$$int_-infty^0 f(x) , dx = 0.5$$
and since $$int_-infty^k f(x) , dx= 0.95$$
and $f$ is positive everywhere, we have $k>0$.
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$
subtracting the difference,
$$int_k^infty f(x) , dx = 0.05$$
Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$
using the information that the function is even,
$$int_-infty^-kf(x) , dx =0.05$$
Hence $$int_-k^k f(x) , dx =0.9$$
$k$ need not be $0.05$, for example, consider the standard normal distribution.
Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.
add a comment |Â
up vote
0
down vote
I interpret the question as $f$ is an even function which is a densify function, then we have
$$int_-infty^0 f(x) , dx = 0.5$$
and since $$int_-infty^k f(x) , dx= 0.95$$
and $f$ is positive everywhere, we have $k>0$.
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$
subtracting the difference,
$$int_k^infty f(x) , dx = 0.05$$
Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$
using the information that the function is even,
$$int_-infty^-kf(x) , dx =0.05$$
Hence $$int_-k^k f(x) , dx =0.9$$
$k$ need not be $0.05$, for example, consider the standard normal distribution.
Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
I interpret the question as $f$ is an even function which is a densify function, then we have
$$int_-infty^0 f(x) , dx = 0.5$$
and since $$int_-infty^k f(x) , dx= 0.95$$
and $f$ is positive everywhere, we have $k>0$.
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$
subtracting the difference,
$$int_k^infty f(x) , dx = 0.05$$
Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$
using the information that the function is even,
$$int_-infty^-kf(x) , dx =0.05$$
Hence $$int_-k^k f(x) , dx =0.9$$
$k$ need not be $0.05$, for example, consider the standard normal distribution.
Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.
I interpret the question as $f$ is an even function which is a densify function, then we have
$$int_-infty^0 f(x) , dx = 0.5$$
and since $$int_-infty^k f(x) , dx= 0.95$$
and $f$ is positive everywhere, we have $k>0$.
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx + int_k^infty f(x) , dx= 1$$
$$int_-infty^-k f(x) , dx+int_-k^k f(x) , dx = 0.95$$
subtracting the difference,
$$int_k^infty f(x) , dx = 0.05$$
Let $y = -x$, then $$-int_-k^-infty f(-y) , dy=0.05$$
using the information that the function is even,
$$int_-infty^-kf(x) , dx =0.05$$
Hence $$int_-k^k f(x) , dx =0.9$$
$k$ need not be $0.05$, for example, consider the standard normal distribution.
Remark: If it is not a density function and we know that $int_-infty^infty f(x) , dx = M>0$, we can repeat the procedure to deduce the desired quantity.
edited Jul 26 at 3:02
answered Jul 26 at 2:42


Siong Thye Goh
77.1k134794
77.1k134794
add a comment |Â
add a comment |Â
up vote
0
down vote
so if $int_-infty^inftyf(x)dx=1$
then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$
and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$
so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$
again since $f(x)=f(-x)$
$int_0^inftyf(-x)dx=int_0^inftyf(x)dx$
so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.
now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$
and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$
It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$
add a comment |Â
up vote
0
down vote
so if $int_-infty^inftyf(x)dx=1$
then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$
and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$
so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$
again since $f(x)=f(-x)$
$int_0^inftyf(-x)dx=int_0^inftyf(x)dx$
so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.
now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$
and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$
It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
so if $int_-infty^inftyf(x)dx=1$
then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$
and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$
so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$
again since $f(x)=f(-x)$
$int_0^inftyf(-x)dx=int_0^inftyf(x)dx$
so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.
now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$
and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$
It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$
so if $int_-infty^inftyf(x)dx=1$
then $int_0^inftyf(x)dx+int_-infty^0f(x)dx=1$
and it has been said that $f(x)=f(-x)$ so let $x=-u,,fracdxdu=-1$
so $int_-infty^0f(x)dx=-int_infty^0f(-u)du=int_0^inftyf(-x)dx$
again since $f(x)=f(-x)$
$int_0^inftyf(-x)dx=int_0^inftyf(x)dx$
so $2int_0^inftyf(x)dx=1$ therefore $int_0^inftyf(x)dx=0.5$ which is what you said.
now if $int_-infty^kf(x)dx=0.95$ then $int_-infty^0f(x)dx+int_0^kf(x)dx=0.95$ so $int_0^kf(x)dx=0.45$
and because $f(x)=f(-x),,int_-k^kf(x)dx=2int_0^kf(x)dx=0.9$
It seems to hold for all even functions provided they can be integated in the domain $(-infty,infty)$
answered Jul 27 at 11:47
Henry Lee
49210
49210
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863000%2fif-int-inftyk-fxdx-95-and-fx-is-positive-even-then-int-k%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
This does not hold in general, at least for general functions $f(x)$. You seem to have a few errors: $k$ is the bound of your integral, and not what the integral evaluates to, so writing $k = 0.05$ is incorrect. Furthermore, you must have some underlying assumptions about $f(x)$. Is $f(x)$ an odd function (i.e. symmetric about the $y$-axis)? If not, then there is no way to know what $int_-k^k f(x) dx$ evaluates to. If $f(x)$ is symmetric, then you can use that $int_k^infty f(x) dx = 0.05,$ use symmetry to evaluate $int_-infty^-k f(x) dx$, and find $int_-k^k$ from there.
– JavaMan
Jul 26 at 2:34
And of course, above, I mean to say if $f(x) is even, not odd!
– JavaMan
Jul 26 at 2:50