Imaginary component of Dirichlet Eta Function's root with real component equal to 1/2

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
2












Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$



Now let $space$$z = sigma + it $ ,



$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$



May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:



$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$



$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$



Therefore,



$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$



$\$



$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$



$ \ $
$ \ $
$ \ $



Where $Re$ and $Im$ respectively represent the real and complex components of its argument.



$ \ $
$ \ $



For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.



Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).



$ \ $



So now I will focus on the numbers $z$, such that $Re(z) = frac12$.



$ \ $



Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.



Let me now reformulate what we're working on:



$ \ $



$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$



Which leads us to:



$ \ $



$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$



$ \ $



and



$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$



$ \ $
$ \ $



Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:



$ \ $



$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



Onward,



$ \ $



$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:



$ \ $



$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



$$therefore$$



$ \ $



$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$



$ \ $



$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$



$ \ $
$ \ $
$ \ $



This system of equations doesn't look too alien, at least.



$ \ $



Let's dive into the first equation, taken it's left side to be a function $f$ of $t$



$ \ $



$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .



$ \ $



Using the expansion



$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$



$ \ $
$ \ $
We can rewrite $f$ as



$ \ $



$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as a infinite polynomial in $t$:



$ \ $



$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$



$ \ $



Now we've reached a remarkable point.



$ \ $



The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.



$ \ $



The independent coefficient,



$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$



is equal to



$$ 1 - Re big(eta(tfrac12) big)$$



$ \ $
$ \ $
$ \ $



The quadratic coefficient,



$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$



is equal to



$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quartic coefficient



$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$



is equal to



$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$



$ \ $



And so on with the subsequent coefficients.



$ \ $



We can thus write $f$ as:



$ \ $



$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$



$ \ $
$ \ $



If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where



$ \ $



$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$



$ \ $
$ \ $



Compactly written as



$ \ $



$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$



$ \ $
$ \ $



Let's go through an analogous procedure now with the second of our two main equations.



$ \ $



First, taken it's left side to be a function $g$ of $t$



$ \ $



$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .



$ \ $



Using the expansion



$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$



$ \ $
$ \ $
We can rewrite $g$ as



$ \ $



$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as an infinite polynomial in $t$:



$ \ $



$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$



$ \ $



$$ - cdots $$



$ \ $
$ \ $



Those polynomial's coefficients are also familiar.



$ \ $



The linear coefficient,



$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$



is equal to



$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



The cubic coefficient,



$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$



is equal to



$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quintic coefficient,



$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$



is equal to



$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$



$ \ $
$ \ $



So on with the subsequent coefficients we can write $g$ as:



$ \ $



$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $
$ \ $



As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where



$ \ $



$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $



Compactly written as



$ \ $



$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$



$ \ $
$ \ $
$ \ $



So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.



$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.



$ \ $



$ \ $



I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.







share|cite|improve this question





















  • What’s your question?
    – Szeto
    Jul 27 at 23:52










  • It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5”. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
    – Leonardo Bohac
    Jul 28 at 0:03






  • 1




    I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
    – Szeto
    Jul 28 at 0:26










  • My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
    – Leonardo Bohac
    Jul 28 at 5:33










  • At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
    – Szeto
    Jul 28 at 5:41














up vote
0
down vote

favorite
2












Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$



Now let $space$$z = sigma + it $ ,



$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$



May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:



$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$



$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$



Therefore,



$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$



$\$



$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$



$ \ $
$ \ $
$ \ $



Where $Re$ and $Im$ respectively represent the real and complex components of its argument.



$ \ $
$ \ $



For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.



Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).



$ \ $



So now I will focus on the numbers $z$, such that $Re(z) = frac12$.



$ \ $



Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.



Let me now reformulate what we're working on:



$ \ $



$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$



Which leads us to:



$ \ $



$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$



$ \ $



and



$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$



$ \ $
$ \ $



Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:



$ \ $



$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



Onward,



$ \ $



$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:



$ \ $



$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



$$therefore$$



$ \ $



$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$



$ \ $



$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$



$ \ $
$ \ $
$ \ $



This system of equations doesn't look too alien, at least.



$ \ $



Let's dive into the first equation, taken it's left side to be a function $f$ of $t$



$ \ $



$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .



$ \ $



Using the expansion



$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$



$ \ $
$ \ $
We can rewrite $f$ as



$ \ $



$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as a infinite polynomial in $t$:



$ \ $



$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$



$ \ $



Now we've reached a remarkable point.



$ \ $



The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.



$ \ $



The independent coefficient,



$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$



is equal to



$$ 1 - Re big(eta(tfrac12) big)$$



$ \ $
$ \ $
$ \ $



The quadratic coefficient,



$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$



is equal to



$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quartic coefficient



$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$



is equal to



$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$



$ \ $



And so on with the subsequent coefficients.



$ \ $



We can thus write $f$ as:



$ \ $



$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$



$ \ $
$ \ $



If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where



$ \ $



$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$



$ \ $
$ \ $



Compactly written as



$ \ $



$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$



$ \ $
$ \ $



Let's go through an analogous procedure now with the second of our two main equations.



$ \ $



First, taken it's left side to be a function $g$ of $t$



$ \ $



$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .



$ \ $



Using the expansion



$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$



$ \ $
$ \ $
We can rewrite $g$ as



$ \ $



$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as an infinite polynomial in $t$:



$ \ $



$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$



$ \ $



$$ - cdots $$



$ \ $
$ \ $



Those polynomial's coefficients are also familiar.



$ \ $



The linear coefficient,



$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$



is equal to



$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



The cubic coefficient,



$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$



is equal to



$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quintic coefficient,



$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$



is equal to



$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$



$ \ $
$ \ $



So on with the subsequent coefficients we can write $g$ as:



$ \ $



$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $
$ \ $



As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where



$ \ $



$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $



Compactly written as



$ \ $



$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$



$ \ $
$ \ $
$ \ $



So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.



$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.



$ \ $



$ \ $



I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.







share|cite|improve this question





















  • What’s your question?
    – Szeto
    Jul 27 at 23:52










  • It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5”. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
    – Leonardo Bohac
    Jul 28 at 0:03






  • 1




    I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
    – Szeto
    Jul 28 at 0:26










  • My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
    – Leonardo Bohac
    Jul 28 at 5:33










  • At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
    – Szeto
    Jul 28 at 5:41












up vote
0
down vote

favorite
2









up vote
0
down vote

favorite
2






2





Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$



Now let $space$$z = sigma + it $ ,



$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$



May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:



$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$



$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$



Therefore,



$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$



$\$



$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$



$ \ $
$ \ $
$ \ $



Where $Re$ and $Im$ respectively represent the real and complex components of its argument.



$ \ $
$ \ $



For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.



Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).



$ \ $



So now I will focus on the numbers $z$, such that $Re(z) = frac12$.



$ \ $



Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.



Let me now reformulate what we're working on:



$ \ $



$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$



Which leads us to:



$ \ $



$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$



$ \ $



and



$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$



$ \ $
$ \ $



Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:



$ \ $



$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



Onward,



$ \ $



$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:



$ \ $



$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



$$therefore$$



$ \ $



$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$



$ \ $



$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$



$ \ $
$ \ $
$ \ $



This system of equations doesn't look too alien, at least.



$ \ $



Let's dive into the first equation, taken it's left side to be a function $f$ of $t$



$ \ $



$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .



$ \ $



Using the expansion



$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$



$ \ $
$ \ $
We can rewrite $f$ as



$ \ $



$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as a infinite polynomial in $t$:



$ \ $



$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$



$ \ $



Now we've reached a remarkable point.



$ \ $



The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.



$ \ $



The independent coefficient,



$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$



is equal to



$$ 1 - Re big(eta(tfrac12) big)$$



$ \ $
$ \ $
$ \ $



The quadratic coefficient,



$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$



is equal to



$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quartic coefficient



$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$



is equal to



$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$



$ \ $



And so on with the subsequent coefficients.



$ \ $



We can thus write $f$ as:



$ \ $



$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$



$ \ $
$ \ $



If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where



$ \ $



$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$



$ \ $
$ \ $



Compactly written as



$ \ $



$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$



$ \ $
$ \ $



Let's go through an analogous procedure now with the second of our two main equations.



$ \ $



First, taken it's left side to be a function $g$ of $t$



$ \ $



$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .



$ \ $



Using the expansion



$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$



$ \ $
$ \ $
We can rewrite $g$ as



$ \ $



$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as an infinite polynomial in $t$:



$ \ $



$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$



$ \ $



$$ - cdots $$



$ \ $
$ \ $



Those polynomial's coefficients are also familiar.



$ \ $



The linear coefficient,



$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$



is equal to



$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



The cubic coefficient,



$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$



is equal to



$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quintic coefficient,



$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$



is equal to



$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$



$ \ $
$ \ $



So on with the subsequent coefficients we can write $g$ as:



$ \ $



$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $
$ \ $



As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where



$ \ $



$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $



Compactly written as



$ \ $



$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$



$ \ $
$ \ $
$ \ $



So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.



$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.



$ \ $



$ \ $



I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.







share|cite|improve this question













Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$



Now let $space$$z = sigma + it $ ,



$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$



May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:



$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$



$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$



Therefore,



$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$



$\$



$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$



$ \ $
$ \ $
$ \ $



Where $Re$ and $Im$ respectively represent the real and complex components of its argument.



$ \ $
$ \ $



For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.



Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).



$ \ $



So now I will focus on the numbers $z$, such that $Re(z) = frac12$.



$ \ $



Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.



Let me now reformulate what we're working on:



$ \ $



$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$



Which leads us to:



$ \ $



$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$



$ \ $



and



$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$



$ \ $
$ \ $



Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:



$ \ $



$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



Onward,



$ \ $



$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:



$ \ $



$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$



$ \ $



$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $
$ \ $
$ \ $



$$therefore$$



$ \ $



$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$



$ \ $



$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$



$ \ $
$ \ $
$ \ $



This system of equations doesn't look too alien, at least.



$ \ $



Let's dive into the first equation, taken it's left side to be a function $f$ of $t$



$ \ $



$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .



$ \ $



Using the expansion



$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$



$ \ $
$ \ $
We can rewrite $f$ as



$ \ $



$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as a infinite polynomial in $t$:



$ \ $



$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$



$ \ $



Now we've reached a remarkable point.



$ \ $



The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.



$ \ $



The independent coefficient,



$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$



is equal to



$$ 1 - Re big(eta(tfrac12) big)$$



$ \ $
$ \ $
$ \ $



The quadratic coefficient,



$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$



is equal to



$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quartic coefficient



$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$



is equal to



$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$



$ \ $



And so on with the subsequent coefficients.



$ \ $



We can thus write $f$ as:



$ \ $



$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$



$ \ $
$ \ $



If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where



$ \ $



$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$



$ \ $
$ \ $



Compactly written as



$ \ $



$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$



$ \ $
$ \ $



Let's go through an analogous procedure now with the second of our two main equations.



$ \ $



First, taken it's left side to be a function $g$ of $t$



$ \ $



$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$



$ \ $



We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .



$ \ $



Using the expansion



$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$



$ \ $
$ \ $
We can rewrite $g$ as



$ \ $



$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$



$ \ $



which we can reassemble to be written as an infinite polynomial in $t$:



$ \ $



$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$



$ \ $



$$ - cdots $$



$ \ $
$ \ $



Those polynomial's coefficients are also familiar.



$ \ $



The linear coefficient,



$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$



is equal to



$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



The cubic coefficient,



$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$



is equal to



$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$



$ \ $
$ \ $
$ \ $



And the quintic coefficient,



$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$



is equal to



$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$



$ \ $
$ \ $



So on with the subsequent coefficients we can write $g$ as:



$ \ $



$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $
$ \ $



As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where



$ \ $



$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$



$ \ $



Compactly written as



$ \ $



$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$



$ \ $
$ \ $
$ \ $



So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.



$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.



$ \ $



$ \ $



I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 30 at 11:58
























asked Jul 27 at 22:00









Leonardo Bohac

648




648











  • What’s your question?
    – Szeto
    Jul 27 at 23:52










  • It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5”. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
    – Leonardo Bohac
    Jul 28 at 0:03






  • 1




    I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
    – Szeto
    Jul 28 at 0:26










  • My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
    – Leonardo Bohac
    Jul 28 at 5:33










  • At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
    – Szeto
    Jul 28 at 5:41
















  • What’s your question?
    – Szeto
    Jul 27 at 23:52










  • It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5”. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
    – Leonardo Bohac
    Jul 28 at 0:03






  • 1




    I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
    – Szeto
    Jul 28 at 0:26










  • My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
    – Leonardo Bohac
    Jul 28 at 5:33










  • At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
    – Szeto
    Jul 28 at 5:41















What’s your question?
– Szeto
Jul 27 at 23:52




What’s your question?
– Szeto
Jul 27 at 23:52












It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5”. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03




It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5”. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03




1




1




I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26




I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26












My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33




My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33












At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41




At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864798%2fimaginary-component-of-dirichlet-eta-functions-root-with-real-component-equal-t%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864798%2fimaginary-component-of-dirichlet-eta-functions-root-with-real-component-equal-t%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?