Imaginary component of Dirichlet Eta Function's root with real component equal to 1/2
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$
Now let $space$$z = sigma + it $ ,
$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$
May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:
$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$
$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$
Therefore,
$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$
$\$
$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$
$ \ $
$ \ $
$ \ $
Where $Re$ and $Im$ respectively represent the real and complex components of its argument.
$ \ $
$ \ $
For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.
Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).
$ \ $
So now I will focus on the numbers $z$, such that $Re(z) = frac12$.
$ \ $
Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.
Let me now reformulate what we're working on:
$ \ $
$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$
Which leads us to:
$ \ $
$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$
$ \ $
and
$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$
$ \ $
$ \ $
Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:
$ \ $
$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
Onward,
$ \ $
$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:
$ \ $
$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
$$therefore$$
$ \ $
$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$
$ \ $
$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$
$ \ $
$ \ $
$ \ $
This system of equations doesn't look too alien, at least.
$ \ $
Let's dive into the first equation, taken it's left side to be a function $f$ of $t$
$ \ $
$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .
$ \ $
Using the expansion
$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$
$ \ $
$ \ $
We can rewrite $f$ as
$ \ $
$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as a infinite polynomial in $t$:
$ \ $
$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$
$ \ $
Now we've reached a remarkable point.
$ \ $
The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.
$ \ $
The independent coefficient,
$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$
is equal to
$$ 1 - Re big(eta(tfrac12) big)$$
$ \ $
$ \ $
$ \ $
The quadratic coefficient,
$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$
is equal to
$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quartic coefficient
$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$
is equal to
$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$
$ \ $
And so on with the subsequent coefficients.
$ \ $
We can thus write $f$ as:
$ \ $
$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$
$ \ $
$ \ $
If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where
$ \ $
$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$
$ \ $
$ \ $
Compactly written as
$ \ $
$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$
$ \ $
$ \ $
Let's go through an analogous procedure now with the second of our two main equations.
$ \ $
First, taken it's left side to be a function $g$ of $t$
$ \ $
$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .
$ \ $
Using the expansion
$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$
$ \ $
$ \ $
We can rewrite $g$ as
$ \ $
$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as an infinite polynomial in $t$:
$ \ $
$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$
$ \ $
$$ - cdots $$
$ \ $
$ \ $
Those polynomial's coefficients are also familiar.
$ \ $
The linear coefficient,
$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$
is equal to
$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
The cubic coefficient,
$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$
is equal to
$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quintic coefficient,
$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$
is equal to
$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$
$ \ $
$ \ $
So on with the subsequent coefficients we can write $g$ as:
$ \ $
$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
$ \ $
As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where
$ \ $
$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
Compactly written as
$ \ $
$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$
$ \ $
$ \ $
$ \ $
So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.
$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.
$ \ $
$ \ $
I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.
riemann-zeta dirichlet-series
add a comment |Â
up vote
0
down vote
favorite
Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$
Now let $space$$z = sigma + it $ ,
$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$
May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:
$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$
$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$
Therefore,
$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$
$\$
$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$
$ \ $
$ \ $
$ \ $
Where $Re$ and $Im$ respectively represent the real and complex components of its argument.
$ \ $
$ \ $
For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.
Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).
$ \ $
So now I will focus on the numbers $z$, such that $Re(z) = frac12$.
$ \ $
Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.
Let me now reformulate what we're working on:
$ \ $
$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$
Which leads us to:
$ \ $
$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$
$ \ $
and
$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$
$ \ $
$ \ $
Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:
$ \ $
$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
Onward,
$ \ $
$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:
$ \ $
$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
$$therefore$$
$ \ $
$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$
$ \ $
$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$
$ \ $
$ \ $
$ \ $
This system of equations doesn't look too alien, at least.
$ \ $
Let's dive into the first equation, taken it's left side to be a function $f$ of $t$
$ \ $
$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .
$ \ $
Using the expansion
$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$
$ \ $
$ \ $
We can rewrite $f$ as
$ \ $
$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as a infinite polynomial in $t$:
$ \ $
$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$
$ \ $
Now we've reached a remarkable point.
$ \ $
The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.
$ \ $
The independent coefficient,
$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$
is equal to
$$ 1 - Re big(eta(tfrac12) big)$$
$ \ $
$ \ $
$ \ $
The quadratic coefficient,
$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$
is equal to
$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quartic coefficient
$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$
is equal to
$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$
$ \ $
And so on with the subsequent coefficients.
$ \ $
We can thus write $f$ as:
$ \ $
$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$
$ \ $
$ \ $
If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where
$ \ $
$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$
$ \ $
$ \ $
Compactly written as
$ \ $
$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$
$ \ $
$ \ $
Let's go through an analogous procedure now with the second of our two main equations.
$ \ $
First, taken it's left side to be a function $g$ of $t$
$ \ $
$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .
$ \ $
Using the expansion
$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$
$ \ $
$ \ $
We can rewrite $g$ as
$ \ $
$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as an infinite polynomial in $t$:
$ \ $
$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$
$ \ $
$$ - cdots $$
$ \ $
$ \ $
Those polynomial's coefficients are also familiar.
$ \ $
The linear coefficient,
$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$
is equal to
$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
The cubic coefficient,
$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$
is equal to
$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quintic coefficient,
$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$
is equal to
$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$
$ \ $
$ \ $
So on with the subsequent coefficients we can write $g$ as:
$ \ $
$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
$ \ $
As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where
$ \ $
$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
Compactly written as
$ \ $
$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$
$ \ $
$ \ $
$ \ $
So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.
$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.
$ \ $
$ \ $
I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.
riemann-zeta dirichlet-series
What’s your question?
– Szeto
Jul 27 at 23:52
It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5â€Â. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03
1
I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26
My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33
At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$
Now let $space$$z = sigma + it $ ,
$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$
May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:
$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$
$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$
Therefore,
$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$
$\$
$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$
$ \ $
$ \ $
$ \ $
Where $Re$ and $Im$ respectively represent the real and complex components of its argument.
$ \ $
$ \ $
For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.
Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).
$ \ $
So now I will focus on the numbers $z$, such that $Re(z) = frac12$.
$ \ $
Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.
Let me now reformulate what we're working on:
$ \ $
$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$
Which leads us to:
$ \ $
$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$
$ \ $
and
$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$
$ \ $
$ \ $
Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:
$ \ $
$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
Onward,
$ \ $
$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:
$ \ $
$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
$$therefore$$
$ \ $
$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$
$ \ $
$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$
$ \ $
$ \ $
$ \ $
This system of equations doesn't look too alien, at least.
$ \ $
Let's dive into the first equation, taken it's left side to be a function $f$ of $t$
$ \ $
$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .
$ \ $
Using the expansion
$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$
$ \ $
$ \ $
We can rewrite $f$ as
$ \ $
$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as a infinite polynomial in $t$:
$ \ $
$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$
$ \ $
Now we've reached a remarkable point.
$ \ $
The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.
$ \ $
The independent coefficient,
$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$
is equal to
$$ 1 - Re big(eta(tfrac12) big)$$
$ \ $
$ \ $
$ \ $
The quadratic coefficient,
$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$
is equal to
$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quartic coefficient
$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$
is equal to
$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$
$ \ $
And so on with the subsequent coefficients.
$ \ $
We can thus write $f$ as:
$ \ $
$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$
$ \ $
$ \ $
If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where
$ \ $
$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$
$ \ $
$ \ $
Compactly written as
$ \ $
$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$
$ \ $
$ \ $
Let's go through an analogous procedure now with the second of our two main equations.
$ \ $
First, taken it's left side to be a function $g$ of $t$
$ \ $
$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .
$ \ $
Using the expansion
$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$
$ \ $
$ \ $
We can rewrite $g$ as
$ \ $
$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as an infinite polynomial in $t$:
$ \ $
$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$
$ \ $
$$ - cdots $$
$ \ $
$ \ $
Those polynomial's coefficients are also familiar.
$ \ $
The linear coefficient,
$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$
is equal to
$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
The cubic coefficient,
$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$
is equal to
$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quintic coefficient,
$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$
is equal to
$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$
$ \ $
$ \ $
So on with the subsequent coefficients we can write $g$ as:
$ \ $
$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
$ \ $
As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where
$ \ $
$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
Compactly written as
$ \ $
$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$
$ \ $
$ \ $
$ \ $
So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.
$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.
$ \ $
$ \ $
I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.
riemann-zeta dirichlet-series
Let $$spacespacespace eta(z) = sum_a=1^infty frac1a^z cdot (-1)^a-1 $$
Now let $space$$z = sigma + it $ ,
$$eta(sigma + it) = sum_a=1^infty frac1a^sigma + it cdot (-1)^a-1 $$
May we split $spacespace$$cfrac1a^sigma + it$ $spacespace$ into its real and complex components:
$$frac1a^sigma + it = frac1a^sigma cdot left(frac1a^itright) = frac1a^sigma cdot left(frac1(e^lna)^itright) = frac1a^sigma cdot left(frac1e^(icdot tlna)right) = frac1a^sigma cdot e^-(icdot tlna)$$
$ \ $
$ \ $
$$ qquad qquad quad = frac1a^sigma cdot bigg( cos(-tlna) + icdot sin(-tlna) bigg) = frac1a^sigma cdot bigg( cos(tlna) - icdot sin(tlna) bigg) $$
Therefore,
$$spacespacespaceRe big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot cos(tlna) cdot (-1)^a-1$$
$\$
$$Im big(eta(sigma+it) big) = sum_a=1^infty frac1a^sigmacdot sin(tlna) cdot (-1)^a $$
$ \ $
$ \ $
$ \ $
Where $Re$ and $Im$ respectively represent the real and complex components of its argument.
$ \ $
$ \ $
For $z$ to be a root of $eta$ we thus require that $Re big(eta(z)big) = 0 = Im big(eta(z)big) $.
Presumably there will be no such $z$ , with $Re(z) = sigmaneq frac12 $ satisfying the condition above (for sure if Riemann Hypothesis turns to be true).
$ \ $
So now I will focus on the numbers $z$, such that $Re(z) = frac12$.
$ \ $
Given that, the unknown of the problem will be $space$ $t = Im(z)$ $space$ for which $space$ $ eta(frac12 + it) = 0$.
Let me now reformulate what we're working on:
$ \ $
$$ eta(tfrac12 + it) = sum_a=1^infty frac1a^frac12 + it cdot (-1)^a-1 $$
Which leads us to:
$ \ $
$$ spacespacespace Re big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot cos(tlna) cdot (-1)^a-1$$
$ \ $
and
$$ Im big(eta(tfrac12+it) big) = sum_a=1^infty frac1a^frac12cdot sin(tlna) cdot (-1)^a$$
$ \ $
$ \ $
Now letting $space$ $a^frac12 = sqrta $ $space$, and writing it by extend:
$ \ $
$$ Re big(eta(tfrac12+it) big) = frac1sqrt1 cdot cos(tln1) - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ Im big(eta(tfrac12+it) big) = -frac1sqrt1 cdot sin(tln1) + frac1sqrt2 cdot sin(tln2) + frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
Onward,
$ \ $
$$ space space Re big(eta(tfrac12+it) big) space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space space Im big(eta(tfrac12+it) big) space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
For $space$ $z = frac12 + it$ $space$ to be a root of $eta$, we ought to require that:
$ \ $
$$ space space 0 space = space 1 - frac1sqrt2 cdot cos(tln2) + frac1sqrt3 cdot cos(tln3) - dots $$
$ \ $
$$ space space 0 space = space 0 space + frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
$ \ $
$ \ $
$$therefore$$
$ \ $
$$ frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots = 1 $$
$ \ $
$$ frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots = 0 $$
$ \ $
$ \ $
$ \ $
This system of equations doesn't look too alien, at least.
$ \ $
Let's dive into the first equation, taken it's left side to be a function $f$ of $t$
$ \ $
$$ f = frac1sqrt2 cdot cos(tln2) - frac1sqrt3 cdot cos(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $f = 1$ $space$ .
$ \ $
Using the expansion
$$cos(x) = 1 - fracx^22 + fracx^424 - space space cdots space space (-1)^j cdot fracx^2j(2j)! space space cdots $$
$ \ $
$ \ $
We can rewrite $f$ as
$ \ $
$$ f = frac1sqrt2 cdot bigg( 1 - frac(tln2)^22 + frac(tln2)^424 - cdots bigg) - frac1sqrt3 cdot bigg( 1 - frac(tln3)^22 + frac(tln3)^424 - cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as a infinite polynomial in $t$:
$ \ $
$$ f = bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg) - fract^22 bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) + fract^424 bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)-cdots $$
$ \ $
Now we've reached a remarkable point.
$ \ $
The above polynomial's coefficients are no more than just constant numbers. And those numbers are pretty familiar.
$ \ $
The independent coefficient,
$$bigg( frac1sqrt2 - frac1sqrt3 + cdots bigg)$$
is equal to
$$ 1 - Re big(eta(tfrac12) big)$$
$ \ $
$ \ $
$ \ $
The quadratic coefficient,
$$ -frac12bigg( frac(ln2)^2sqrt2 - frac(ln3)^2sqrt3 + cdots bigg) $$
is equal to
$$ -frac12 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quartic coefficient
$$ frac124bigg( frac(ln2)^4sqrt2 - frac(ln3)^4sqrt3 + cdots bigg)$$
is equal to
$$ frac124 bigg( - fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 $$
$ \ $
And so on with the subsequent coefficients.
$ \ $
We can thus write $f$ as:
$ \ $
$$ f = 1 - Re big(eta(tfrac12) big) + fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 - fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 + cdots $$
$ \ $
$ \ $
If we want $f = 1$, then $t$ must be the roots of $space$ $beth$ $space$, where
$ \ $
$$ beth = Re big(eta(tfrac12) big) - fract^22 bigg( fracd^2 Re big(eta(tfrac12+it) big)dt^2 bigg) _t=0 + fract^424 bigg(fracd^4 Re big(eta(tfrac12+it) big)dt^4 bigg) _t=0 - cdots $$
$ \ $
$ \ $
Compactly written as
$ \ $
$$ beth = sum_l=0^infty (-1)^l cdot fract^2l(2l)! cdot bigg( fracd^(2l) Re big(eta(tfrac12+it) big)dt^(2l) bigg) _t=0$$
$ \ $
$ \ $
Let's go through an analogous procedure now with the second of our two main equations.
$ \ $
First, taken it's left side to be a function $g$ of $t$
$ \ $
$$ g = frac1sqrt2 cdot sin(tln2) - frac1sqrt3 cdot sin(tln3) + dots $$
$ \ $
We will be then interested in finding the numbers $t$ for which $space$ $g = 0$ $space$ .
$ \ $
Using the expansion
$$sin(x) = x - fracx^36 + fracx^5120 - space space cdots space space (-1)^j cdot fracx^2j+1(2j+1)! space space cdots $$
$ \ $
$ \ $
We can rewrite $g$ as
$ \ $
$$ g = frac1sqrt2 cdot bigg( (tln2) - frac(tln2)^36 + frac(tln2)^5120 cdots bigg) - frac1sqrt3 cdot bigg( (tln3) - frac(tln3)^36 + frac(tln3)^5120 cdots bigg) + cdots $$
$ \ $
which we can reassemble to be written as an infinite polynomial in $t$:
$ \ $
$$ g = t bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) - fract^36 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) + fract^5120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg)$$
$ \ $
$$ - cdots $$
$ \ $
$ \ $
Those polynomial's coefficients are also familiar.
$ \ $
The linear coefficient,
$$ bigg( frac(ln2)sqrt2 - frac(ln3)sqrt3 + cdots bigg) $$
is equal to
$$ bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
The cubic coefficient,
$$ - frac16 bigg( frac(ln2)^3sqrt2 - frac(ln3)^3sqrt3 + cdots bigg) $$
is equal to
$$ frac16 bigg( fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 $$
$ \ $
$ \ $
$ \ $
And the quintic coefficient,
$$ frac1120 bigg( frac(ln2)^5sqrt2 - frac(ln3)^5sqrt3 + cdots bigg) $$
is equal to
$$ frac1120 bigg( fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 $$
$ \ $
$ \ $
So on with the subsequent coefficients we can write $g$ as:
$ \ $
$$ g = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
$ \ $
As we want $g = 0$, then $t$ must be the roots of $space$ $gimel$ $space$, where
$ \ $
$$ gimel = t bigg( fracd Im big(eta(tfrac12+it) big)dt bigg) _t=0 + fract^36 bigg(fracd^3 Im big(eta(tfrac12+it) big)dt^3 bigg) _t=0 + fract^5120 bigg(fracd^5 Im big(eta(tfrac12+it) big)dt^5 bigg) _t=0 + cdots $$
$ \ $
Compactly written as
$ \ $
$$ gimel = sum_l=0^infty fract^2l+1(2l+1)! cdot bigg( fracd^(2l+1) Im big(eta(tfrac12+it) big)dt^(2l+1) bigg) _t=0$$
$ \ $
$ \ $
$ \ $
So far this is the most explicit representation of $t$, which is the imaginary component of a non-trivial root of $eta$(or $zeta$), I could reach.
$ \ $
To partially conclude this post, and to state what has been accomplished:
$ \ $
$ \ $
There are two infinite polynomials, $beth$ and $gimel$, defined as mentioned, such that their common roots happen to be the imaginary component of the (some, probably all) non-trivial roots of the Riemann Zeta function.
$ \ $
$ \ $
I'd like to thank you if you went along all through this point, and to say that any comments or suggestions will be greatly welcomed.
riemann-zeta dirichlet-series
edited Jul 30 at 11:58
asked Jul 27 at 22:00
Leonardo Bohac
648
648
What’s your question?
– Szeto
Jul 27 at 23:52
It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5â€Â. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03
1
I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26
My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33
At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41
add a comment |Â
What’s your question?
– Szeto
Jul 27 at 23:52
It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5â€Â. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03
1
I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26
My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33
At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41
What’s your question?
– Szeto
Jul 27 at 23:52
What’s your question?
– Szeto
Jul 27 at 23:52
It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5â€Â. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03
It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5â€Â. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03
1
1
I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26
I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26
My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33
My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33
At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41
At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864798%2fimaginary-component-of-dirichlet-eta-functions-root-with-real-component-equal-t%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What’s your question?
– Szeto
Jul 27 at 23:52
It’s not a specific question, indeed. If I’d to put in more directly it would be : “How can we find a closed formula for the non-trivial roots of the Riemann Zeta function, given that it has real part equal to 0.5â€Â. By doing so, I expect some ideias on how to prove (or disprove) the Riemann Hypothesis will be obtained.
– Leonardo Bohac
Jul 28 at 0:03
1
I recall when I was a student, I also attempted to break zeta function into real and imaginary parts, and then tried to prove/disprove RH. I didn’t know derivatives so what you have done is surely more advanced. However, I somehow think that the series you established are simply some taylor series. Moreover, the rearrangements of sums are not always permitted; I didn’t check validity, but the validity surely depends on the type of convergence of zeta/eta function.
– Szeto
Jul 28 at 0:26
My first thoughts were to split Zeta into real and imaginary, too. Though I found out that it wouldn't be very useful, since the Zeta function (the simple one) does not converge for Re(z) < 1. As I wanted to investigate Re(z) = 1/2, the Dirichlet Eta function turned out to be better to work on. Let me know if you find incorrectness among my work done so far.
– Leonardo Bohac
Jul 28 at 5:33
At the moment I don’t have the time. I may be will check later. By the way, I suggest you to rewrite your question more compactly so that the question won’t be too long; I am sure that many users lost interest due to its length.
– Szeto
Jul 28 at 5:41