Prove that $sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Given an expression
$$sum_i vec r_i times vec uF_i $$
where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$
How to prove that the above equation is true?
summation vectors vector-analysis physics
add a comment |Â
up vote
0
down vote
favorite
Given an expression
$$sum_i vec r_i times vec uF_i $$
where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$
How to prove that the above equation is true?
summation vectors vector-analysis physics
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given an expression
$$sum_i vec r_i times vec uF_i $$
where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$
How to prove that the above equation is true?
summation vectors vector-analysis physics
Given an expression
$$sum_i vec r_i times vec uF_i $$
where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$
How to prove that the above equation is true?
summation vectors vector-analysis physics
asked Jul 26 at 4:57
Taenyfan
216
216
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Let's keep it simple. You need just the following two properties of the cross product:
$$vecatimes(kvecb)=(kveca)timesvecbtag1$$
$$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$
Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:
$$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$
All this is explained in excellent detail on Wikipedia.
The proof is now simple:
$$sum_i vec r_i times (F_ivec u)=$$
$$sum_i (F_ivec r_i) times vec u=tag(1) applied$$
$$(sum_i F_ivec r_i) times vec utag(2) applied$$
add a comment |Â
up vote
0
down vote
I will use superscript for the index of the vector, so the subscript can be the element of a vector.
$$left(sum_i vecr^i times vecuF^iright)_j=$$
$$sum_ileft(vecr^i times vecuF^iright)_j=$$
$$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
$$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
$$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
So we have that
$$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Let's keep it simple. You need just the following two properties of the cross product:
$$vecatimes(kvecb)=(kveca)timesvecbtag1$$
$$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$
Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:
$$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$
All this is explained in excellent detail on Wikipedia.
The proof is now simple:
$$sum_i vec r_i times (F_ivec u)=$$
$$sum_i (F_ivec r_i) times vec u=tag(1) applied$$
$$(sum_i F_ivec r_i) times vec utag(2) applied$$
add a comment |Â
up vote
1
down vote
accepted
Let's keep it simple. You need just the following two properties of the cross product:
$$vecatimes(kvecb)=(kveca)timesvecbtag1$$
$$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$
Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:
$$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$
All this is explained in excellent detail on Wikipedia.
The proof is now simple:
$$sum_i vec r_i times (F_ivec u)=$$
$$sum_i (F_ivec r_i) times vec u=tag(1) applied$$
$$(sum_i F_ivec r_i) times vec utag(2) applied$$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Let's keep it simple. You need just the following two properties of the cross product:
$$vecatimes(kvecb)=(kveca)timesvecbtag1$$
$$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$
Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:
$$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$
All this is explained in excellent detail on Wikipedia.
The proof is now simple:
$$sum_i vec r_i times (F_ivec u)=$$
$$sum_i (F_ivec r_i) times vec u=tag(1) applied$$
$$(sum_i F_ivec r_i) times vec utag(2) applied$$
Let's keep it simple. You need just the following two properties of the cross product:
$$vecatimes(kvecb)=(kveca)timesvecbtag1$$
$$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$
Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:
$$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$
All this is explained in excellent detail on Wikipedia.
The proof is now simple:
$$sum_i vec r_i times (F_ivec u)=$$
$$sum_i (F_ivec r_i) times vec u=tag(1) applied$$
$$(sum_i F_ivec r_i) times vec utag(2) applied$$
answered Jul 26 at 6:26


Oldboy
2,6101316
2,6101316
add a comment |Â
add a comment |Â
up vote
0
down vote
I will use superscript for the index of the vector, so the subscript can be the element of a vector.
$$left(sum_i vecr^i times vecuF^iright)_j=$$
$$sum_ileft(vecr^i times vecuF^iright)_j=$$
$$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
$$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
$$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
So we have that
$$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$
add a comment |Â
up vote
0
down vote
I will use superscript for the index of the vector, so the subscript can be the element of a vector.
$$left(sum_i vecr^i times vecuF^iright)_j=$$
$$sum_ileft(vecr^i times vecuF^iright)_j=$$
$$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
$$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
$$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
So we have that
$$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
I will use superscript for the index of the vector, so the subscript can be the element of a vector.
$$left(sum_i vecr^i times vecuF^iright)_j=$$
$$sum_ileft(vecr^i times vecuF^iright)_j=$$
$$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
$$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
$$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
So we have that
$$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$
I will use superscript for the index of the vector, so the subscript can be the element of a vector.
$$left(sum_i vecr^i times vecuF^iright)_j=$$
$$sum_ileft(vecr^i times vecuF^iright)_j=$$
$$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
$$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
$$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
$$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
So we have that
$$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$
answered Jul 26 at 5:20
Botond
3,8432632
3,8432632
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863086%2fprove-that-sum-i-vec-r-i-times-vec-uf-i-sum-i-vec-r-if-i-times-vec%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password