Prove that $sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Given an expression
$$sum_i vec r_i times vec uF_i $$
where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$



How to prove that the above equation is true?







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    Given an expression
    $$sum_i vec r_i times vec uF_i $$
    where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$



    How to prove that the above equation is true?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Given an expression
      $$sum_i vec r_i times vec uF_i $$
      where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$



      How to prove that the above equation is true?







      share|cite|improve this question











      Given an expression
      $$sum_i vec r_i times vec uF_i $$
      where $vec r_i$ are position vectors from the origin, $vec u$ is a constant unit vector and $F_i$ are constants, it is true that$$sum_i vec r_i times vec uF_i = (sum_i vec r_iF_i) times vec u.$$



      How to prove that the above equation is true?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 26 at 4:57









      Taenyfan

      216




      216




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Let's keep it simple. You need just the following two properties of the cross product:



          $$vecatimes(kvecb)=(kveca)timesvecbtag1$$



          $$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$



          Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:



          $$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$



          All this is explained in excellent detail on Wikipedia.



          The proof is now simple:



          $$sum_i vec r_i times (F_ivec u)=$$



          $$sum_i (F_ivec r_i) times vec u=tag(1) applied$$



          $$(sum_i F_ivec r_i) times vec utag(2) applied$$






          share|cite|improve this answer




























            up vote
            0
            down vote













            I will use superscript for the index of the vector, so the subscript can be the element of a vector.
            $$left(sum_i vecr^i times vecuF^iright)_j=$$
            $$sum_ileft(vecr^i times vecuF^iright)_j=$$
            $$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
            $$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
            $$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
            $$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
            $$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
            So we have that
            $$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863086%2fprove-that-sum-i-vec-r-i-times-vec-uf-i-sum-i-vec-r-if-i-times-vec%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote



              accepted










              Let's keep it simple. You need just the following two properties of the cross product:



              $$vecatimes(kvecb)=(kveca)timesvecbtag1$$



              $$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$



              Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:



              $$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$



              All this is explained in excellent detail on Wikipedia.



              The proof is now simple:



              $$sum_i vec r_i times (F_ivec u)=$$



              $$sum_i (F_ivec r_i) times vec u=tag(1) applied$$



              $$(sum_i F_ivec r_i) times vec utag(2) applied$$






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted










                Let's keep it simple. You need just the following two properties of the cross product:



                $$vecatimes(kvecb)=(kveca)timesvecbtag1$$



                $$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$



                Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:



                $$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$



                All this is explained in excellent detail on Wikipedia.



                The proof is now simple:



                $$sum_i vec r_i times (F_ivec u)=$$



                $$sum_i (F_ivec r_i) times vec u=tag(1) applied$$



                $$(sum_i F_ivec r_i) times vec utag(2) applied$$






                share|cite|improve this answer























                  up vote
                  1
                  down vote



                  accepted







                  up vote
                  1
                  down vote



                  accepted






                  Let's keep it simple. You need just the following two properties of the cross product:



                  $$vecatimes(kvecb)=(kveca)timesvecbtag1$$



                  $$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$



                  Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:



                  $$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$



                  All this is explained in excellent detail on Wikipedia.



                  The proof is now simple:



                  $$sum_i vec r_i times (F_ivec u)=$$



                  $$sum_i (F_ivec r_i) times vec u=tag(1) applied$$



                  $$(sum_i F_ivec r_i) times vec utag(2) applied$$






                  share|cite|improve this answer













                  Let's keep it simple. You need just the following two properties of the cross product:



                  $$vecatimes(kvecb)=(kveca)timesvecbtag1$$



                  $$(veca+vecb)timesvecc=vecatimesvecc+vecbtimesvecctag2$$



                  Both can be easily proved if you use the fact that the cross product of vectors $veca=a_xveci+a_yvecj+a_zveck$ and $vecb=b_xveci+b_yvecj+b_zveck$ is:



                  $$vecatimesvecb=(a_yb_z-a_zb_y)veci+(a_zb_x-a_xb_z)vecj+(a_xb_y-a_yb_x)veck$$



                  All this is explained in excellent detail on Wikipedia.



                  The proof is now simple:



                  $$sum_i vec r_i times (F_ivec u)=$$



                  $$sum_i (F_ivec r_i) times vec u=tag(1) applied$$



                  $$(sum_i F_ivec r_i) times vec utag(2) applied$$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 26 at 6:26









                  Oldboy

                  2,6101316




                  2,6101316




















                      up vote
                      0
                      down vote













                      I will use superscript for the index of the vector, so the subscript can be the element of a vector.
                      $$left(sum_i vecr^i times vecuF^iright)_j=$$
                      $$sum_ileft(vecr^i times vecuF^iright)_j=$$
                      $$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
                      $$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
                      $$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
                      $$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
                      $$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
                      So we have that
                      $$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$






                      share|cite|improve this answer

























                        up vote
                        0
                        down vote













                        I will use superscript for the index of the vector, so the subscript can be the element of a vector.
                        $$left(sum_i vecr^i times vecuF^iright)_j=$$
                        $$sum_ileft(vecr^i times vecuF^iright)_j=$$
                        $$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
                        $$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
                        $$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
                        $$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
                        $$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
                        So we have that
                        $$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$






                        share|cite|improve this answer























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          I will use superscript for the index of the vector, so the subscript can be the element of a vector.
                          $$left(sum_i vecr^i times vecuF^iright)_j=$$
                          $$sum_ileft(vecr^i times vecuF^iright)_j=$$
                          $$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
                          $$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
                          $$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
                          $$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
                          $$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
                          So we have that
                          $$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$






                          share|cite|improve this answer













                          I will use superscript for the index of the vector, so the subscript can be the element of a vector.
                          $$left(sum_i vecr^i times vecuF^iright)_j=$$
                          $$sum_ileft(vecr^i times vecuF^iright)_j=$$
                          $$sum_ileft(sum_k,lepsilon_jkl r^i_k u_lF^iright)=$$
                          $$sum_k,lleft(sum_iepsilon_jkl r^i_k u_lF^iright)=$$
                          $$sum_k,lepsilon_jklleft(sum_i r^i_k F^iright)u_l=$$
                          $$sum_k,lepsilon_jklleft(sum_i vecr^i F^iright)_ku_l=$$
                          $$left(left(sum_i vecr^i F^iright)timesvecuright)_j$$
                          So we have that
                          $$sum_i vecr^i times vecuF^i=left(sum_i vecr^i F^iright)timesvecu$$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 26 at 5:20









                          Botond

                          3,8432632




                          3,8432632






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863086%2fprove-that-sum-i-vec-r-i-times-vec-uf-i-sum-i-vec-r-if-i-times-vec%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?