Is there a error?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $G$ be a finite nilpotent group.



We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,



where $Phi(G)$ is the Frattini subgroup of $G$.







share|cite|improve this question

















  • 1




    What's $Phi(G)$? Frattini subgroup?
    – Lord Shark the Unknown
    Jul 26 at 9:42










  • @Lord Shark the Unknown Yes!
    – Qin
    Jul 26 at 9:43






  • 1




    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    – Lord Shark the Unknown
    Jul 26 at 9:49







  • 2




    Yes: An "n" is missing.
    – Christian Blatter
    Jul 26 at 10:08














up vote
0
down vote

favorite












Let $G$ be a finite nilpotent group.



We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,



where $Phi(G)$ is the Frattini subgroup of $G$.







share|cite|improve this question

















  • 1




    What's $Phi(G)$? Frattini subgroup?
    – Lord Shark the Unknown
    Jul 26 at 9:42










  • @Lord Shark the Unknown Yes!
    – Qin
    Jul 26 at 9:43






  • 1




    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    – Lord Shark the Unknown
    Jul 26 at 9:49







  • 2




    Yes: An "n" is missing.
    – Christian Blatter
    Jul 26 at 10:08












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $G$ be a finite nilpotent group.



We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,



where $Phi(G)$ is the Frattini subgroup of $G$.







share|cite|improve this question













Let $G$ be a finite nilpotent group.



We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,



where $Phi(G)$ is the Frattini subgroup of $G$.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 26 at 9:44
























asked Jul 26 at 9:38









Qin

8217




8217







  • 1




    What's $Phi(G)$? Frattini subgroup?
    – Lord Shark the Unknown
    Jul 26 at 9:42










  • @Lord Shark the Unknown Yes!
    – Qin
    Jul 26 at 9:43






  • 1




    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    – Lord Shark the Unknown
    Jul 26 at 9:49







  • 2




    Yes: An "n" is missing.
    – Christian Blatter
    Jul 26 at 10:08












  • 1




    What's $Phi(G)$? Frattini subgroup?
    – Lord Shark the Unknown
    Jul 26 at 9:42










  • @Lord Shark the Unknown Yes!
    – Qin
    Jul 26 at 9:43






  • 1




    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    – Lord Shark the Unknown
    Jul 26 at 9:49







  • 2




    Yes: An "n" is missing.
    – Christian Blatter
    Jul 26 at 10:08







1




1




What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42




What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42












@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43




@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43




1




1




The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49





The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49





2




2




Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08




Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863253%2fis-there-a-error%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863253%2fis-there-a-error%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?