Is there a error?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $G$ be a finite nilpotent group.
We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.
Is the following equation right? And why?
$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,
where $Phi(G)$ is the Frattini subgroup of $G$.
finite-groups
add a comment |Â
up vote
0
down vote
favorite
Let $G$ be a finite nilpotent group.
We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.
Is the following equation right? And why?
$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,
where $Phi(G)$ is the Frattini subgroup of $G$.
finite-groups
1
What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42
@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43
1
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49
2
Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $G$ be a finite nilpotent group.
We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.
Is the following equation right? And why?
$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,
where $Phi(G)$ is the Frattini subgroup of $G$.
finite-groups
Let $G$ be a finite nilpotent group.
We know that $G=G_p_1times G_p_2times cdots times G_p_r$ where $G_p_iin Syl_p_i(G)$, $i=1,dots,r$.
Is the following equation right? And why?
$G/Phi(G)=G_p_1/Phi(G_p_1)timescdotstimes G_p_r/Phi(G_p_r)$,
where $Phi(G)$ is the Frattini subgroup of $G$.
finite-groups
edited Jul 26 at 9:44
asked Jul 26 at 9:38
Qin
8217
8217
1
What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42
@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43
1
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49
2
Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08
add a comment |Â
1
What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42
@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43
1
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49
2
Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08
1
1
What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42
What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42
@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43
@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43
1
1
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49
2
2
Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08
Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863253%2fis-there-a-error%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
What's $Phi(G)$? Frattini subgroup?
– Lord Shark the Unknown
Jul 26 at 9:42
@Lord Shark the Unknown Yes!
– Qin
Jul 26 at 9:43
1
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
– Lord Shark the Unknown
Jul 26 at 9:49
2
Yes: An "n" is missing.
– Christian Blatter
Jul 26 at 10:08