Kernel of a bilinear form - Structural Mechanics

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












If I have a bilinear form



$$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$



I would like to find the kernel of this bilinear form when $u in V$ such that,
$$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$



I would like to comment what are C and D operators.
D is Symmetric derivative operator.
$$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
C is fourth order isotropic elasticity tensor in voigt notation.
http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
pg no - 18







share|cite|improve this question























    up vote
    1
    down vote

    favorite












    If I have a bilinear form



    $$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$



    I would like to find the kernel of this bilinear form when $u in V$ such that,
    $$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$



    I would like to comment what are C and D operators.
    D is Symmetric derivative operator.
    $$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
    C is fourth order isotropic elasticity tensor in voigt notation.
    http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
    pg no - 18







    share|cite|improve this question





















      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      If I have a bilinear form



      $$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$



      I would like to find the kernel of this bilinear form when $u in V$ such that,
      $$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$



      I would like to comment what are C and D operators.
      D is Symmetric derivative operator.
      $$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
      C is fourth order isotropic elasticity tensor in voigt notation.
      http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
      pg no - 18







      share|cite|improve this question











      If I have a bilinear form



      $$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$



      I would like to find the kernel of this bilinear form when $u in V$ such that,
      $$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$



      I would like to comment what are C and D operators.
      D is Symmetric derivative operator.
      $$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
      C is fourth order isotropic elasticity tensor in voigt notation.
      http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
      pg no - 18









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 23 at 8:41









      Accidental Genius

      267




      267

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860137%2fkernel-of-a-bilinear-form-structural-mechanics%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860137%2fkernel-of-a-bilinear-form-structural-mechanics%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?