Kernel of a bilinear form - Structural Mechanics
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
If I have a bilinear form
$$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$
I would like to find the kernel of this bilinear form when $u in V$ such that,
$$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$
I would like to comment what are C and D operators.
D is Symmetric derivative operator.
$$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
C is fourth order isotropic elasticity tensor in voigt notation.
http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
pg no - 18
functional-analysis bilinear-form
add a comment |Â
up vote
1
down vote
favorite
If I have a bilinear form
$$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$
I would like to find the kernel of this bilinear form when $u in V$ such that,
$$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$
I would like to comment what are C and D operators.
D is Symmetric derivative operator.
$$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
C is fourth order isotropic elasticity tensor in voigt notation.
http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
pg no - 18
functional-analysis bilinear-form
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
If I have a bilinear form
$$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$
I would like to find the kernel of this bilinear form when $u in V$ such that,
$$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$
I would like to comment what are C and D operators.
D is Symmetric derivative operator.
$$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
C is fourth order isotropic elasticity tensor in voigt notation.
http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
pg no - 18
functional-analysis bilinear-form
If I have a bilinear form
$$a : (H^1(Omega))^3 times (H^1(Omega))^3 mapsto mathbbR hspace0.9in a(vecu, vecv) = int_Omega(Dvecu)^T C (Dvecv), dOmega $$
I would like to find the kernel of this bilinear form when $u in V$ such that,
$$V = u_x(0,0,0) = u_y(0,0,0) = u_z(0,0,0) = 0 $$
I would like to comment what are C and D operators.
D is Symmetric derivative operator.
$$Dvecu = beginbmatrix fracpartial u_xpartial x \ fracpartial u_ypartial y \ fracpartial u_zpartial z \ frac12( fracpartial u_xpartial y + fracpartial u_ypartial x) \ frac12( fracpartial u_ypartial z + fracpartial u_zpartial y) \ frac12( fracpartial u_xpartial z + fracpartial u_zpartial x)endbmatrix : Omega mapsto mathbbR^6$$
C is fourth order isotropic elasticity tensor in voigt notation.
http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf
pg no - 18
functional-analysis bilinear-form
asked Jul 23 at 8:41
Accidental Genius
267
267
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860137%2fkernel-of-a-bilinear-form-structural-mechanics%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password