Let $U$ and $V$ be independent random variables both having Bernoulli , Compute $E(W)$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $U$ and $V$ be independent random variables both having Bernoulli distribution, i.e. $U$ ~ Bernoulli($0.2$) and $V$ ~ Bernoulli($0.2$)
Let $W = U cdot V$
(a) Compute $E(W)$
(b) Compute $E(UW)$
My attempt:
$(a)$
$$E(W) = E(UV) = E(U)E(V)$$
Because they're independent
$E(U) = E(V) = 0.2$, so $E(W) = 0.04$
$(b)$
$E(UW) = E(UUW) = E(U^2V) = E(U^2V) = E(U^2)E(V)$
$E(U^2) = 0.2^2 = 0.04$ [Not sure about this]
Thus,
$E(UW) = 0.04 cdot 0.2 = 0.008$
probability expectation
add a comment |Â
up vote
0
down vote
favorite
Let $U$ and $V$ be independent random variables both having Bernoulli distribution, i.e. $U$ ~ Bernoulli($0.2$) and $V$ ~ Bernoulli($0.2$)
Let $W = U cdot V$
(a) Compute $E(W)$
(b) Compute $E(UW)$
My attempt:
$(a)$
$$E(W) = E(UV) = E(U)E(V)$$
Because they're independent
$E(U) = E(V) = 0.2$, so $E(W) = 0.04$
$(b)$
$E(UW) = E(UUW) = E(U^2V) = E(U^2V) = E(U^2)E(V)$
$E(U^2) = 0.2^2 = 0.04$ [Not sure about this]
Thus,
$E(UW) = 0.04 cdot 0.2 = 0.008$
probability expectation
1
Note $U^2=U$ here so $E[U^2]=E[U]$ not $left(E[U]right)^2$
– Henry
Jul 25 at 23:53
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $U$ and $V$ be independent random variables both having Bernoulli distribution, i.e. $U$ ~ Bernoulli($0.2$) and $V$ ~ Bernoulli($0.2$)
Let $W = U cdot V$
(a) Compute $E(W)$
(b) Compute $E(UW)$
My attempt:
$(a)$
$$E(W) = E(UV) = E(U)E(V)$$
Because they're independent
$E(U) = E(V) = 0.2$, so $E(W) = 0.04$
$(b)$
$E(UW) = E(UUW) = E(U^2V) = E(U^2V) = E(U^2)E(V)$
$E(U^2) = 0.2^2 = 0.04$ [Not sure about this]
Thus,
$E(UW) = 0.04 cdot 0.2 = 0.008$
probability expectation
Let $U$ and $V$ be independent random variables both having Bernoulli distribution, i.e. $U$ ~ Bernoulli($0.2$) and $V$ ~ Bernoulli($0.2$)
Let $W = U cdot V$
(a) Compute $E(W)$
(b) Compute $E(UW)$
My attempt:
$(a)$
$$E(W) = E(UV) = E(U)E(V)$$
Because they're independent
$E(U) = E(V) = 0.2$, so $E(W) = 0.04$
$(b)$
$E(UW) = E(UUW) = E(U^2V) = E(U^2V) = E(U^2)E(V)$
$E(U^2) = 0.2^2 = 0.04$ [Not sure about this]
Thus,
$E(UW) = 0.04 cdot 0.2 = 0.008$
probability expectation
edited Jul 26 at 2:55


Graham Kemp
80.1k43275
80.1k43275
asked Jul 25 at 23:45
Tinler
404311
404311
1
Note $U^2=U$ here so $E[U^2]=E[U]$ not $left(E[U]right)^2$
– Henry
Jul 25 at 23:53
add a comment |Â
1
Note $U^2=U$ here so $E[U^2]=E[U]$ not $left(E[U]right)^2$
– Henry
Jul 25 at 23:53
1
1
Note $U^2=U$ here so $E[U^2]=E[U]$ not $left(E[U]right)^2$
– Henry
Jul 25 at 23:53
Note $U^2=U$ here so $E[U^2]=E[U]$ not $left(E[U]right)^2$
– Henry
Jul 25 at 23:53
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
Note that
beginalign
E(U^2) & = 0 cdot P(U^2 = 0) + 1 cdot P(U^2 = 1) \
& = 0 cdot P(U = 0) + 1 cdot P(U = 1) qquad leftarrow textbecause $U$ is either $0$ or $1$ \
& = P(U = 1)
endalign
add a comment |Â
up vote
0
down vote
$mathsf E(UV) = mathsf E(U)mathsf E(V) = 0.2^2$ Yes.
$mathsf E(U^2V) = mathsf E(U^2)mathsf E(V)$ Also.
However, $requirecancelcancel~~mathsf E(U^2)=mathsf E(U)^2~~$ No! Rather: $mathsf E(U^2)=mathsfVar(U)+mathsf E(U)^2$
Though, because $U$ is Bernouli, we can also use: $mathsf E(U^2)=mathsf P(U^2=1)=mathsf P(U=1)=mathsf E(U)$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Note that
beginalign
E(U^2) & = 0 cdot P(U^2 = 0) + 1 cdot P(U^2 = 1) \
& = 0 cdot P(U = 0) + 1 cdot P(U = 1) qquad leftarrow textbecause $U$ is either $0$ or $1$ \
& = P(U = 1)
endalign
add a comment |Â
up vote
0
down vote
Note that
beginalign
E(U^2) & = 0 cdot P(U^2 = 0) + 1 cdot P(U^2 = 1) \
& = 0 cdot P(U = 0) + 1 cdot P(U = 1) qquad leftarrow textbecause $U$ is either $0$ or $1$ \
& = P(U = 1)
endalign
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Note that
beginalign
E(U^2) & = 0 cdot P(U^2 = 0) + 1 cdot P(U^2 = 1) \
& = 0 cdot P(U = 0) + 1 cdot P(U = 1) qquad leftarrow textbecause $U$ is either $0$ or $1$ \
& = P(U = 1)
endalign
Note that
beginalign
E(U^2) & = 0 cdot P(U^2 = 0) + 1 cdot P(U^2 = 1) \
& = 0 cdot P(U = 0) + 1 cdot P(U = 1) qquad leftarrow textbecause $U$ is either $0$ or $1$ \
& = P(U = 1)
endalign
answered Jul 25 at 23:50


Brian Tung
25.2k32353
25.2k32353
add a comment |Â
add a comment |Â
up vote
0
down vote
$mathsf E(UV) = mathsf E(U)mathsf E(V) = 0.2^2$ Yes.
$mathsf E(U^2V) = mathsf E(U^2)mathsf E(V)$ Also.
However, $requirecancelcancel~~mathsf E(U^2)=mathsf E(U)^2~~$ No! Rather: $mathsf E(U^2)=mathsfVar(U)+mathsf E(U)^2$
Though, because $U$ is Bernouli, we can also use: $mathsf E(U^2)=mathsf P(U^2=1)=mathsf P(U=1)=mathsf E(U)$.
add a comment |Â
up vote
0
down vote
$mathsf E(UV) = mathsf E(U)mathsf E(V) = 0.2^2$ Yes.
$mathsf E(U^2V) = mathsf E(U^2)mathsf E(V)$ Also.
However, $requirecancelcancel~~mathsf E(U^2)=mathsf E(U)^2~~$ No! Rather: $mathsf E(U^2)=mathsfVar(U)+mathsf E(U)^2$
Though, because $U$ is Bernouli, we can also use: $mathsf E(U^2)=mathsf P(U^2=1)=mathsf P(U=1)=mathsf E(U)$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$mathsf E(UV) = mathsf E(U)mathsf E(V) = 0.2^2$ Yes.
$mathsf E(U^2V) = mathsf E(U^2)mathsf E(V)$ Also.
However, $requirecancelcancel~~mathsf E(U^2)=mathsf E(U)^2~~$ No! Rather: $mathsf E(U^2)=mathsfVar(U)+mathsf E(U)^2$
Though, because $U$ is Bernouli, we can also use: $mathsf E(U^2)=mathsf P(U^2=1)=mathsf P(U=1)=mathsf E(U)$.
$mathsf E(UV) = mathsf E(U)mathsf E(V) = 0.2^2$ Yes.
$mathsf E(U^2V) = mathsf E(U^2)mathsf E(V)$ Also.
However, $requirecancelcancel~~mathsf E(U^2)=mathsf E(U)^2~~$ No! Rather: $mathsf E(U^2)=mathsfVar(U)+mathsf E(U)^2$
Though, because $U$ is Bernouli, we can also use: $mathsf E(U^2)=mathsf P(U^2=1)=mathsf P(U=1)=mathsf E(U)$.
edited Jul 26 at 2:55
answered Jul 25 at 23:50


Graham Kemp
80.1k43275
80.1k43275
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862938%2flet-u-and-v-be-independent-random-variables-both-having-bernoulli-compute%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Note $U^2=U$ here so $E[U^2]=E[U]$ not $left(E[U]right)^2$
– Henry
Jul 25 at 23:53