Prove $f:mathbbR^nto mathbbR$ if differentiable is continuous

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Below I have written a proof for the problem in my title and was wondering if the proof works



$$0=lim_hto 0|f(a+h)-f(a)-triangledown fcdot h|$$



$$=lim_hto 0|f(a+h)-f(a)-big(f_xh_1+cdots f_nh_nbig)|$$



and since $h to 0$ implies $(h_1,cdots ,h_n) Longrightarrow (0,cdots , 0)$



$$big(f_xh_1+cdots f_nh_nbig) =0 text as hto 0$$



So we get continuity since



$$0=lim_hto 0|f(a+h)-f(a)|$$







share|cite|improve this question





















  • In one dimension suppose $f(a^+)ne f(a^-)$, but $ lim_hto 0fracf(a^++h)-f(a^+)h= lim_hto 0fracf(a^-)-f(a^--h)h$. Does this define the derivative at $a$?
    – herb steinberg
    Jul 23 at 0:31















up vote
0
down vote

favorite












Below I have written a proof for the problem in my title and was wondering if the proof works



$$0=lim_hto 0|f(a+h)-f(a)-triangledown fcdot h|$$



$$=lim_hto 0|f(a+h)-f(a)-big(f_xh_1+cdots f_nh_nbig)|$$



and since $h to 0$ implies $(h_1,cdots ,h_n) Longrightarrow (0,cdots , 0)$



$$big(f_xh_1+cdots f_nh_nbig) =0 text as hto 0$$



So we get continuity since



$$0=lim_hto 0|f(a+h)-f(a)|$$







share|cite|improve this question





















  • In one dimension suppose $f(a^+)ne f(a^-)$, but $ lim_hto 0fracf(a^++h)-f(a^+)h= lim_hto 0fracf(a^-)-f(a^--h)h$. Does this define the derivative at $a$?
    – herb steinberg
    Jul 23 at 0:31













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Below I have written a proof for the problem in my title and was wondering if the proof works



$$0=lim_hto 0|f(a+h)-f(a)-triangledown fcdot h|$$



$$=lim_hto 0|f(a+h)-f(a)-big(f_xh_1+cdots f_nh_nbig)|$$



and since $h to 0$ implies $(h_1,cdots ,h_n) Longrightarrow (0,cdots , 0)$



$$big(f_xh_1+cdots f_nh_nbig) =0 text as hto 0$$



So we get continuity since



$$0=lim_hto 0|f(a+h)-f(a)|$$







share|cite|improve this question













Below I have written a proof for the problem in my title and was wondering if the proof works



$$0=lim_hto 0|f(a+h)-f(a)-triangledown fcdot h|$$



$$=lim_hto 0|f(a+h)-f(a)-big(f_xh_1+cdots f_nh_nbig)|$$



and since $h to 0$ implies $(h_1,cdots ,h_n) Longrightarrow (0,cdots , 0)$



$$big(f_xh_1+cdots f_nh_nbig) =0 text as hto 0$$



So we get continuity since



$$0=lim_hto 0|f(a+h)-f(a)|$$









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 23 at 0:29
























asked Jul 23 at 0:24









john fowles

1,088817




1,088817











  • In one dimension suppose $f(a^+)ne f(a^-)$, but $ lim_hto 0fracf(a^++h)-f(a^+)h= lim_hto 0fracf(a^-)-f(a^--h)h$. Does this define the derivative at $a$?
    – herb steinberg
    Jul 23 at 0:31

















  • In one dimension suppose $f(a^+)ne f(a^-)$, but $ lim_hto 0fracf(a^++h)-f(a^+)h= lim_hto 0fracf(a^-)-f(a^--h)h$. Does this define the derivative at $a$?
    – herb steinberg
    Jul 23 at 0:31
















In one dimension suppose $f(a^+)ne f(a^-)$, but $ lim_hto 0fracf(a^++h)-f(a^+)h= lim_hto 0fracf(a^-)-f(a^--h)h$. Does this define the derivative at $a$?
– herb steinberg
Jul 23 at 0:31





In one dimension suppose $f(a^+)ne f(a^-)$, but $ lim_hto 0fracf(a^++h)-f(a^+)h= lim_hto 0fracf(a^-)-f(a^--h)h$. Does this define the derivative at $a$?
– herb steinberg
Jul 23 at 0:31











2 Answers
2






active

oldest

votes

















up vote
1
down vote



accepted










Here's a proof from the book (also one in English :)).



beginalign* lim_x to x_0 f(x) = f(x_0) &iff lim_x to x_0 |f(x)- f(x_0)| = 0 \ \ &iff lim_x to x_0 left|f(x)- f(x_0)right| fracx-x_0x-x_0= 0 \ \ & iff lim_x to x_0 fracx-x_0|x-x_0| = 0 \ \ & iff lim_x to x_0 left(fracx-x_0right)|x-x_0| = 0 \ \ & leq lim_x to x_0 left(frac + x-x_0right)|x-x_0| \ \ & = lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| endalign*



By the differentiability assumption we have,



$$lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 = 0$$



Hence, each limit exists separately i.e;



beginalign* &lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| \ \ & =lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + lim_x to x_0 |f'(x_0)(x-x_0)| \ \ & = 0 endalign*



Therefore,



$$ lim_x to x_0 |f(x)-f(x_0)| = 0 Rightarrow lim_x to x_0 f(x) = f(x_0)$$






share|cite|improve this answer























  • This is clear. Thanks. and just wondering, were there any problems with my proof?
    – john fowles
    Jul 23 at 4:51










  • Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
    – Faraad Armwood
    Jul 23 at 5:02










  • What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
    – john fowles
    Jul 23 at 5:23










  • Yes and yes. Sorry about the confusion.
    – Faraad Armwood
    Jul 23 at 15:06


















up vote
1
down vote













Probar que si $f:mathbbR^nlongrightarrow mathbbR^n$ es diferenciable en $ainmathbbR^n$, entonces es continua en $a$.



Supongamos que $f$ es diferenciable en $ainmathbbR^n$, es decir, existe una única transformación lineal $lambda:mathbbR^nlongrightarrowmathbbR^n$ tal que
$$
displaystylelim_hlongrightarrow 0 fracvert f(a+h)-f(a)-lambda (h)vertvert hvert=0.
$$
Observe que
$$
beginarraycccccc
0 & leq & vert f(a+h)-f(a)vert & = & left vert lambda(h)+vert hvert cdot dfracf(a+h)-f(a)-lambda (h)vert hvertrightvert \
& & & leq & vertlambda (h)vert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert \
& & & leq & Mcdotvert hvert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert
endarray
$$
Así,
$$
displaystylelim_hlongrightarrow 0 0leqdisplaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vertleqdisplaystylelim_hlongrightarrow 0 vert hvertleft(vertlambdavert+dfracvert f(a+h)-f(a)-lambda (h)vertvert hvertright)
$$



$
beginarrayrl
Rightarrow & displaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vert=0 \
& x=a+h qquad hlongrightarrow 0 Leftrightarrow xlongrightarrow a \
Rightarrow & displaystylelim_xlongrightarrow a vert f(x)-f(a)vert=0 \
Rightarrow & displaystylelim_xlongrightarrow a f(x)=f(a) \
Rightarrow & f mbox es continua en a
endarray
$






share|cite|improve this answer





















  • I know you speak spanish, but he's asking in english hahaha
    – Gonzalo Benavides
    Jul 23 at 4:20










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859894%2fprove-f-mathbbrn-to-mathbbr-if-differentiable-is-continuous%23new-answer', 'question_page');

);

Post as a guest






























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote



accepted










Here's a proof from the book (also one in English :)).



beginalign* lim_x to x_0 f(x) = f(x_0) &iff lim_x to x_0 |f(x)- f(x_0)| = 0 \ \ &iff lim_x to x_0 left|f(x)- f(x_0)right| fracx-x_0x-x_0= 0 \ \ & iff lim_x to x_0 fracx-x_0|x-x_0| = 0 \ \ & iff lim_x to x_0 left(fracx-x_0right)|x-x_0| = 0 \ \ & leq lim_x to x_0 left(frac + x-x_0right)|x-x_0| \ \ & = lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| endalign*



By the differentiability assumption we have,



$$lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 = 0$$



Hence, each limit exists separately i.e;



beginalign* &lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| \ \ & =lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + lim_x to x_0 |f'(x_0)(x-x_0)| \ \ & = 0 endalign*



Therefore,



$$ lim_x to x_0 |f(x)-f(x_0)| = 0 Rightarrow lim_x to x_0 f(x) = f(x_0)$$






share|cite|improve this answer























  • This is clear. Thanks. and just wondering, were there any problems with my proof?
    – john fowles
    Jul 23 at 4:51










  • Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
    – Faraad Armwood
    Jul 23 at 5:02










  • What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
    – john fowles
    Jul 23 at 5:23










  • Yes and yes. Sorry about the confusion.
    – Faraad Armwood
    Jul 23 at 15:06















up vote
1
down vote



accepted










Here's a proof from the book (also one in English :)).



beginalign* lim_x to x_0 f(x) = f(x_0) &iff lim_x to x_0 |f(x)- f(x_0)| = 0 \ \ &iff lim_x to x_0 left|f(x)- f(x_0)right| fracx-x_0x-x_0= 0 \ \ & iff lim_x to x_0 fracx-x_0|x-x_0| = 0 \ \ & iff lim_x to x_0 left(fracx-x_0right)|x-x_0| = 0 \ \ & leq lim_x to x_0 left(frac + x-x_0right)|x-x_0| \ \ & = lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| endalign*



By the differentiability assumption we have,



$$lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 = 0$$



Hence, each limit exists separately i.e;



beginalign* &lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| \ \ & =lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + lim_x to x_0 |f'(x_0)(x-x_0)| \ \ & = 0 endalign*



Therefore,



$$ lim_x to x_0 |f(x)-f(x_0)| = 0 Rightarrow lim_x to x_0 f(x) = f(x_0)$$






share|cite|improve this answer























  • This is clear. Thanks. and just wondering, were there any problems with my proof?
    – john fowles
    Jul 23 at 4:51










  • Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
    – Faraad Armwood
    Jul 23 at 5:02










  • What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
    – john fowles
    Jul 23 at 5:23










  • Yes and yes. Sorry about the confusion.
    – Faraad Armwood
    Jul 23 at 15:06













up vote
1
down vote



accepted







up vote
1
down vote



accepted






Here's a proof from the book (also one in English :)).



beginalign* lim_x to x_0 f(x) = f(x_0) &iff lim_x to x_0 |f(x)- f(x_0)| = 0 \ \ &iff lim_x to x_0 left|f(x)- f(x_0)right| fracx-x_0x-x_0= 0 \ \ & iff lim_x to x_0 fracx-x_0|x-x_0| = 0 \ \ & iff lim_x to x_0 left(fracx-x_0right)|x-x_0| = 0 \ \ & leq lim_x to x_0 left(frac + x-x_0right)|x-x_0| \ \ & = lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| endalign*



By the differentiability assumption we have,



$$lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 = 0$$



Hence, each limit exists separately i.e;



beginalign* &lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| \ \ & =lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + lim_x to x_0 |f'(x_0)(x-x_0)| \ \ & = 0 endalign*



Therefore,



$$ lim_x to x_0 |f(x)-f(x_0)| = 0 Rightarrow lim_x to x_0 f(x) = f(x_0)$$






share|cite|improve this answer















Here's a proof from the book (also one in English :)).



beginalign* lim_x to x_0 f(x) = f(x_0) &iff lim_x to x_0 |f(x)- f(x_0)| = 0 \ \ &iff lim_x to x_0 left|f(x)- f(x_0)right| fracx-x_0x-x_0= 0 \ \ & iff lim_x to x_0 fracx-x_0|x-x_0| = 0 \ \ & iff lim_x to x_0 left(fracx-x_0right)|x-x_0| = 0 \ \ & leq lim_x to x_0 left(frac + x-x_0right)|x-x_0| \ \ & = lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| endalign*



By the differentiability assumption we have,



$$lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 = 0$$



Hence, each limit exists separately i.e;



beginalign* &lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + |f'(x_0)(x-x_0)| \ \ & =lim_x to x_0 fracf(x)-f(x_0)-f'(x_0)(x-x_0)x-x_0 |x-x_0| + lim_x to x_0 |f'(x_0)(x-x_0)| \ \ & = 0 endalign*



Therefore,



$$ lim_x to x_0 |f(x)-f(x_0)| = 0 Rightarrow lim_x to x_0 f(x) = f(x_0)$$







share|cite|improve this answer















share|cite|improve this answer



share|cite|improve this answer








edited Jul 23 at 1:30


























answered Jul 23 at 1:04









Faraad Armwood

7,4292619




7,4292619











  • This is clear. Thanks. and just wondering, were there any problems with my proof?
    – john fowles
    Jul 23 at 4:51










  • Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
    – Faraad Armwood
    Jul 23 at 5:02










  • What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
    – john fowles
    Jul 23 at 5:23










  • Yes and yes. Sorry about the confusion.
    – Faraad Armwood
    Jul 23 at 15:06

















  • This is clear. Thanks. and just wondering, were there any problems with my proof?
    – john fowles
    Jul 23 at 4:51










  • Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
    – Faraad Armwood
    Jul 23 at 5:02










  • What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
    – john fowles
    Jul 23 at 5:23










  • Yes and yes. Sorry about the confusion.
    – Faraad Armwood
    Jul 23 at 15:06
















This is clear. Thanks. and just wondering, were there any problems with my proof?
– john fowles
Jul 23 at 4:51




This is clear. Thanks. and just wondering, were there any problems with my proof?
– john fowles
Jul 23 at 4:51












Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
– Faraad Armwood
Jul 23 at 5:02




Yes, when you write that second equality with the limit, the quantities on each side of the minus sign don't go to zero with different orders and so you can just call $nabla f(a) cdot h$ zero in the limit and keep the other term i.e $f(a+h) - f(a)$
– Faraad Armwood
Jul 23 at 5:02












What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
– john fowles
Jul 23 at 5:23




What do you mean by "go to zero with different orders". I assume you mean that if I had $|2h|-|h|$ then these terms approach $0$ at different rates where $2h$ will equal $0$ faster? But more importantly, is what your hinting at a rule that states that I can't get rid of one term based on that reason if it applies to more terms in the expression?
– john fowles
Jul 23 at 5:23












Yes and yes. Sorry about the confusion.
– Faraad Armwood
Jul 23 at 15:06





Yes and yes. Sorry about the confusion.
– Faraad Armwood
Jul 23 at 15:06











up vote
1
down vote













Probar que si $f:mathbbR^nlongrightarrow mathbbR^n$ es diferenciable en $ainmathbbR^n$, entonces es continua en $a$.



Supongamos que $f$ es diferenciable en $ainmathbbR^n$, es decir, existe una única transformación lineal $lambda:mathbbR^nlongrightarrowmathbbR^n$ tal que
$$
displaystylelim_hlongrightarrow 0 fracvert f(a+h)-f(a)-lambda (h)vertvert hvert=0.
$$
Observe que
$$
beginarraycccccc
0 & leq & vert f(a+h)-f(a)vert & = & left vert lambda(h)+vert hvert cdot dfracf(a+h)-f(a)-lambda (h)vert hvertrightvert \
& & & leq & vertlambda (h)vert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert \
& & & leq & Mcdotvert hvert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert
endarray
$$
Así,
$$
displaystylelim_hlongrightarrow 0 0leqdisplaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vertleqdisplaystylelim_hlongrightarrow 0 vert hvertleft(vertlambdavert+dfracvert f(a+h)-f(a)-lambda (h)vertvert hvertright)
$$



$
beginarrayrl
Rightarrow & displaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vert=0 \
& x=a+h qquad hlongrightarrow 0 Leftrightarrow xlongrightarrow a \
Rightarrow & displaystylelim_xlongrightarrow a vert f(x)-f(a)vert=0 \
Rightarrow & displaystylelim_xlongrightarrow a f(x)=f(a) \
Rightarrow & f mbox es continua en a
endarray
$






share|cite|improve this answer





















  • I know you speak spanish, but he's asking in english hahaha
    – Gonzalo Benavides
    Jul 23 at 4:20














up vote
1
down vote













Probar que si $f:mathbbR^nlongrightarrow mathbbR^n$ es diferenciable en $ainmathbbR^n$, entonces es continua en $a$.



Supongamos que $f$ es diferenciable en $ainmathbbR^n$, es decir, existe una única transformación lineal $lambda:mathbbR^nlongrightarrowmathbbR^n$ tal que
$$
displaystylelim_hlongrightarrow 0 fracvert f(a+h)-f(a)-lambda (h)vertvert hvert=0.
$$
Observe que
$$
beginarraycccccc
0 & leq & vert f(a+h)-f(a)vert & = & left vert lambda(h)+vert hvert cdot dfracf(a+h)-f(a)-lambda (h)vert hvertrightvert \
& & & leq & vertlambda (h)vert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert \
& & & leq & Mcdotvert hvert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert
endarray
$$
Así,
$$
displaystylelim_hlongrightarrow 0 0leqdisplaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vertleqdisplaystylelim_hlongrightarrow 0 vert hvertleft(vertlambdavert+dfracvert f(a+h)-f(a)-lambda (h)vertvert hvertright)
$$



$
beginarrayrl
Rightarrow & displaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vert=0 \
& x=a+h qquad hlongrightarrow 0 Leftrightarrow xlongrightarrow a \
Rightarrow & displaystylelim_xlongrightarrow a vert f(x)-f(a)vert=0 \
Rightarrow & displaystylelim_xlongrightarrow a f(x)=f(a) \
Rightarrow & f mbox es continua en a
endarray
$






share|cite|improve this answer





















  • I know you speak spanish, but he's asking in english hahaha
    – Gonzalo Benavides
    Jul 23 at 4:20












up vote
1
down vote










up vote
1
down vote









Probar que si $f:mathbbR^nlongrightarrow mathbbR^n$ es diferenciable en $ainmathbbR^n$, entonces es continua en $a$.



Supongamos que $f$ es diferenciable en $ainmathbbR^n$, es decir, existe una única transformación lineal $lambda:mathbbR^nlongrightarrowmathbbR^n$ tal que
$$
displaystylelim_hlongrightarrow 0 fracvert f(a+h)-f(a)-lambda (h)vertvert hvert=0.
$$
Observe que
$$
beginarraycccccc
0 & leq & vert f(a+h)-f(a)vert & = & left vert lambda(h)+vert hvert cdot dfracf(a+h)-f(a)-lambda (h)vert hvertrightvert \
& & & leq & vertlambda (h)vert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert \
& & & leq & Mcdotvert hvert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert
endarray
$$
Así,
$$
displaystylelim_hlongrightarrow 0 0leqdisplaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vertleqdisplaystylelim_hlongrightarrow 0 vert hvertleft(vertlambdavert+dfracvert f(a+h)-f(a)-lambda (h)vertvert hvertright)
$$



$
beginarrayrl
Rightarrow & displaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vert=0 \
& x=a+h qquad hlongrightarrow 0 Leftrightarrow xlongrightarrow a \
Rightarrow & displaystylelim_xlongrightarrow a vert f(x)-f(a)vert=0 \
Rightarrow & displaystylelim_xlongrightarrow a f(x)=f(a) \
Rightarrow & f mbox es continua en a
endarray
$






share|cite|improve this answer













Probar que si $f:mathbbR^nlongrightarrow mathbbR^n$ es diferenciable en $ainmathbbR^n$, entonces es continua en $a$.



Supongamos que $f$ es diferenciable en $ainmathbbR^n$, es decir, existe una única transformación lineal $lambda:mathbbR^nlongrightarrowmathbbR^n$ tal que
$$
displaystylelim_hlongrightarrow 0 fracvert f(a+h)-f(a)-lambda (h)vertvert hvert=0.
$$
Observe que
$$
beginarraycccccc
0 & leq & vert f(a+h)-f(a)vert & = & left vert lambda(h)+vert hvert cdot dfracf(a+h)-f(a)-lambda (h)vert hvertrightvert \
& & & leq & vertlambda (h)vert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert \
& & & leq & Mcdotvert hvert +vert hvertcdotdfracvert f(a+h)-f(a)-lambda (h)vertvert hvert
endarray
$$
Así,
$$
displaystylelim_hlongrightarrow 0 0leqdisplaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vertleqdisplaystylelim_hlongrightarrow 0 vert hvertleft(vertlambdavert+dfracvert f(a+h)-f(a)-lambda (h)vertvert hvertright)
$$



$
beginarrayrl
Rightarrow & displaystylelim_hlongrightarrow 0 vert f(a+h)-f(a)vert=0 \
& x=a+h qquad hlongrightarrow 0 Leftrightarrow xlongrightarrow a \
Rightarrow & displaystylelim_xlongrightarrow a vert f(x)-f(a)vert=0 \
Rightarrow & displaystylelim_xlongrightarrow a f(x)=f(a) \
Rightarrow & f mbox es continua en a
endarray
$







share|cite|improve this answer













share|cite|improve this answer



share|cite|improve this answer











answered Jul 23 at 0:49









Moisés Rojas

111




111











  • I know you speak spanish, but he's asking in english hahaha
    – Gonzalo Benavides
    Jul 23 at 4:20
















  • I know you speak spanish, but he's asking in english hahaha
    – Gonzalo Benavides
    Jul 23 at 4:20















I know you speak spanish, but he's asking in english hahaha
– Gonzalo Benavides
Jul 23 at 4:20




I know you speak spanish, but he's asking in english hahaha
– Gonzalo Benavides
Jul 23 at 4:20












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859894%2fprove-f-mathbbrn-to-mathbbr-if-differentiable-is-continuous%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Relationship between determinant of matrix and determinant of adjoint?

Color the edges and diagonals of a regular polygon