Proving $frac1sin(A/2)+frac1sin(B/2)+frac1sin(C/2)ge 6$, where $A$, $B$, $C$ are angles of a triangle [duplicate]
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
This question already has an answer here:
Proving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a triangle [closed]
2 answers
If $A$, $B$, and $C$ are the angles of a triangle, then $$frac1sin left(fracA2right)+frac1sinleft(fracB2right)+frac1sinleft(fracC2right)ge 6$$
I have used multiple trigonometric identities, but the situation becomes complicated. I also thought about the Sine Law. To be honest, I don’t think these techniques are suitable. Any suggestions?
geometry trigonometry inequality euclidean-geometry geometric-inequalities
marked as duplicate by Martin R, Arnaud Mortier, Robert Z, B. Mehta, Blue
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 25 at 21:30
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
3
down vote
favorite
This question already has an answer here:
Proving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a triangle [closed]
2 answers
If $A$, $B$, and $C$ are the angles of a triangle, then $$frac1sin left(fracA2right)+frac1sinleft(fracB2right)+frac1sinleft(fracC2right)ge 6$$
I have used multiple trigonometric identities, but the situation becomes complicated. I also thought about the Sine Law. To be honest, I don’t think these techniques are suitable. Any suggestions?
geometry trigonometry inequality euclidean-geometry geometric-inequalities
marked as duplicate by Martin R, Arnaud Mortier, Robert Z, B. Mehta, Blue
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 25 at 21:30
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
Martin R ...may i ask a question : How did you find that my question is duplicate i have searched the site many times????
– Johnny chad
Jul 25 at 20:39
With Approach0: approach0.xyz/search/… – See also math.meta.stackexchange.com/questions/24978/….
– Martin R
Jul 25 at 20:45
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
This question already has an answer here:
Proving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a triangle [closed]
2 answers
If $A$, $B$, and $C$ are the angles of a triangle, then $$frac1sin left(fracA2right)+frac1sinleft(fracB2right)+frac1sinleft(fracC2right)ge 6$$
I have used multiple trigonometric identities, but the situation becomes complicated. I also thought about the Sine Law. To be honest, I don’t think these techniques are suitable. Any suggestions?
geometry trigonometry inequality euclidean-geometry geometric-inequalities
This question already has an answer here:
Proving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a triangle [closed]
2 answers
If $A$, $B$, and $C$ are the angles of a triangle, then $$frac1sin left(fracA2right)+frac1sinleft(fracB2right)+frac1sinleft(fracC2right)ge 6$$
I have used multiple trigonometric identities, but the situation becomes complicated. I also thought about the Sine Law. To be honest, I don’t think these techniques are suitable. Any suggestions?
This question already has an answer here:
Proving $cscfracalpha2+cscfracbeta2+cscfracgamma2 ge 6$, where $alpha$, $beta$, $gamma$ are the angles of a triangle [closed]
2 answers
geometry trigonometry inequality euclidean-geometry geometric-inequalities
edited Jul 26 at 8:56
Michael Rozenberg
87.8k1578180
87.8k1578180
asked Jul 25 at 20:11
Johnny chad
1106
1106
marked as duplicate by Martin R, Arnaud Mortier, Robert Z, B. Mehta, Blue
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 25 at 21:30
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Martin R, Arnaud Mortier, Robert Z, B. Mehta, Blue
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Jul 25 at 21:30
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
Martin R ...may i ask a question : How did you find that my question is duplicate i have searched the site many times????
– Johnny chad
Jul 25 at 20:39
With Approach0: approach0.xyz/search/… – See also math.meta.stackexchange.com/questions/24978/….
– Martin R
Jul 25 at 20:45
add a comment |Â
Martin R ...may i ask a question : How did you find that my question is duplicate i have searched the site many times????
– Johnny chad
Jul 25 at 20:39
With Approach0: approach0.xyz/search/… – See also math.meta.stackexchange.com/questions/24978/….
– Martin R
Jul 25 at 20:45
Martin R ...may i ask a question : How did you find that my question is duplicate i have searched the site many times????
– Johnny chad
Jul 25 at 20:39
Martin R ...may i ask a question : How did you find that my question is duplicate i have searched the site many times????
– Johnny chad
Jul 25 at 20:39
With Approach0: approach0.xyz/search/… – See also math.meta.stackexchange.com/questions/24978/….
– Martin R
Jul 25 at 20:45
With Approach0: approach0.xyz/search/… – See also math.meta.stackexchange.com/questions/24978/….
– Martin R
Jul 25 at 20:45
add a comment |Â
6 Answers
6
active
oldest
votes
up vote
3
down vote
accepted
HINT:
Consider
$$fleft( x right)=1/sin left( fracx2 right);,quad 0<x<pi $$
It easy to verify that $f''left( x right)>0$ and we have a convex function. Now Using Jensen’s inequality:
$$frac13fleft( fracA2 right)+frac13fleft( fracB2 right)+frac13fleft( fracC2 right)ge fleft( frac13fracA2+frac13fracB2+frac13fracC2 right)$$
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
add a comment |Â
up vote
3
down vote
A Pure Geometric Proof
Let $I$ be the incenter of $triangle ABC$, $r$ be the radius of the incircle. Then $$dfracrsindfracA2+dfracrsindfracB2+dfracrsindfracC2=IA+IB+IC.tag1$$
Now, let's apply Erdos-Mordell Inequality,which states that:
from a point $P$ inside a given $triangle ABC$, the perpendiculars $PX,
PY, PZ$ are drawn to its sides. Then
$$PA+PB+PC≥2(PX+PY+PZ).$$
Thus, we instantly have
$$IA+IB+ICgeq 2(r+r+r)=6r.tag2$$
Combining $(1)$ and $(2)$, we readily obtain what we want to prove.
add a comment |Â
up vote
2
down vote
We have that
$$f(x)=frac1sin x$$
is convex then by Jensen's inequality
$$fracfrac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)3ge frac1sinleft(fracA+B+C6right)$$
and then
$$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac3sinleft(fracA+B+C6right)=6$$
add a comment |Â
up vote
0
down vote
Also, by AM-GM in the standard notation we obtain:
$$sum_cycfrac1sinfracalpha2geqfrac3sqrt[3]prodlimits_cycsinfracalpha2=frac3sqrt[3]fracr4Rgeqfrac3sqrt[3]frac14cdot2=6.$$
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
add a comment |Â
up vote
0
down vote
We use $$sinleft(fracA2right)=sqrtfrac(s-b)(s-c)bc$$ etc then we get by AM-GM:
$$frac13left(sqrtfracbc(s-b)(s-c)+sqrtfracac(s-a)(s-c)+sqrtfracab(s-a)(s-b)right)geq sqrt[3]fracabc(s-a)(s-b)(s-c)geq 2$$
if $$fracabc(s-a)(s-b)(s-c)geq 8$$
and this is $$abcgeq (-a+b+c)(a-b+c)(a+b-c)$$
using the Substitution
$$a=y+z,b=x+z,c=x+y$$
we get
$$(x+y)(x+z)(z+x)geq 8xyz$$ and this is AM-GM!
Note that $$s=fraca+b+c2$$
add a comment |Â
up vote
0
down vote
Applying Lagrange Multipliers shows that $$ sin(A/2) + sin (B/2) + sin (B/2)$$ is maximized when the triangle is equilateral in which case we have $$ sin(A/2) + sin (B/2) + sin (B/2)=3/2$$
The Arithmetic Harmonic inequality implies $$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac9sin(A/2) +sin(B/2)+sin(C/2)ge frac 9(3/2)=6$$
add a comment |Â
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
HINT:
Consider
$$fleft( x right)=1/sin left( fracx2 right);,quad 0<x<pi $$
It easy to verify that $f''left( x right)>0$ and we have a convex function. Now Using Jensen’s inequality:
$$frac13fleft( fracA2 right)+frac13fleft( fracB2 right)+frac13fleft( fracC2 right)ge fleft( frac13fracA2+frac13fracB2+frac13fracC2 right)$$
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
add a comment |Â
up vote
3
down vote
accepted
HINT:
Consider
$$fleft( x right)=1/sin left( fracx2 right);,quad 0<x<pi $$
It easy to verify that $f''left( x right)>0$ and we have a convex function. Now Using Jensen’s inequality:
$$frac13fleft( fracA2 right)+frac13fleft( fracB2 right)+frac13fleft( fracC2 right)ge fleft( frac13fracA2+frac13fracB2+frac13fracC2 right)$$
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
HINT:
Consider
$$fleft( x right)=1/sin left( fracx2 right);,quad 0<x<pi $$
It easy to verify that $f''left( x right)>0$ and we have a convex function. Now Using Jensen’s inequality:
$$frac13fleft( fracA2 right)+frac13fleft( fracB2 right)+frac13fleft( fracC2 right)ge fleft( frac13fracA2+frac13fracB2+frac13fracC2 right)$$
HINT:
Consider
$$fleft( x right)=1/sin left( fracx2 right);,quad 0<x<pi $$
It easy to verify that $f''left( x right)>0$ and we have a convex function. Now Using Jensen’s inequality:
$$frac13fleft( fracA2 right)+frac13fleft( fracB2 right)+frac13fleft( fracC2 right)ge fleft( frac13fracA2+frac13fracB2+frac13fracC2 right)$$
answered Jul 25 at 20:23


Vincent Law
1,457212
1,457212
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
add a comment |Â
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
thanks man this is simple after some show you the solution
– Johnny chad
Jul 25 at 20:37
add a comment |Â
up vote
3
down vote
A Pure Geometric Proof
Let $I$ be the incenter of $triangle ABC$, $r$ be the radius of the incircle. Then $$dfracrsindfracA2+dfracrsindfracB2+dfracrsindfracC2=IA+IB+IC.tag1$$
Now, let's apply Erdos-Mordell Inequality,which states that:
from a point $P$ inside a given $triangle ABC$, the perpendiculars $PX,
PY, PZ$ are drawn to its sides. Then
$$PA+PB+PC≥2(PX+PY+PZ).$$
Thus, we instantly have
$$IA+IB+ICgeq 2(r+r+r)=6r.tag2$$
Combining $(1)$ and $(2)$, we readily obtain what we want to prove.
add a comment |Â
up vote
3
down vote
A Pure Geometric Proof
Let $I$ be the incenter of $triangle ABC$, $r$ be the radius of the incircle. Then $$dfracrsindfracA2+dfracrsindfracB2+dfracrsindfracC2=IA+IB+IC.tag1$$
Now, let's apply Erdos-Mordell Inequality,which states that:
from a point $P$ inside a given $triangle ABC$, the perpendiculars $PX,
PY, PZ$ are drawn to its sides. Then
$$PA+PB+PC≥2(PX+PY+PZ).$$
Thus, we instantly have
$$IA+IB+ICgeq 2(r+r+r)=6r.tag2$$
Combining $(1)$ and $(2)$, we readily obtain what we want to prove.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
A Pure Geometric Proof
Let $I$ be the incenter of $triangle ABC$, $r$ be the radius of the incircle. Then $$dfracrsindfracA2+dfracrsindfracB2+dfracrsindfracC2=IA+IB+IC.tag1$$
Now, let's apply Erdos-Mordell Inequality,which states that:
from a point $P$ inside a given $triangle ABC$, the perpendiculars $PX,
PY, PZ$ are drawn to its sides. Then
$$PA+PB+PC≥2(PX+PY+PZ).$$
Thus, we instantly have
$$IA+IB+ICgeq 2(r+r+r)=6r.tag2$$
Combining $(1)$ and $(2)$, we readily obtain what we want to prove.
A Pure Geometric Proof
Let $I$ be the incenter of $triangle ABC$, $r$ be the radius of the incircle. Then $$dfracrsindfracA2+dfracrsindfracB2+dfracrsindfracC2=IA+IB+IC.tag1$$
Now, let's apply Erdos-Mordell Inequality,which states that:
from a point $P$ inside a given $triangle ABC$, the perpendiculars $PX,
PY, PZ$ are drawn to its sides. Then
$$PA+PB+PC≥2(PX+PY+PZ).$$
Thus, we instantly have
$$IA+IB+ICgeq 2(r+r+r)=6r.tag2$$
Combining $(1)$ and $(2)$, we readily obtain what we want to prove.
edited Jul 26 at 7:39
answered Jul 25 at 21:20
mengdie1982
2,835216
2,835216
add a comment |Â
add a comment |Â
up vote
2
down vote
We have that
$$f(x)=frac1sin x$$
is convex then by Jensen's inequality
$$fracfrac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)3ge frac1sinleft(fracA+B+C6right)$$
and then
$$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac3sinleft(fracA+B+C6right)=6$$
add a comment |Â
up vote
2
down vote
We have that
$$f(x)=frac1sin x$$
is convex then by Jensen's inequality
$$fracfrac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)3ge frac1sinleft(fracA+B+C6right)$$
and then
$$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac3sinleft(fracA+B+C6right)=6$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
We have that
$$f(x)=frac1sin x$$
is convex then by Jensen's inequality
$$fracfrac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)3ge frac1sinleft(fracA+B+C6right)$$
and then
$$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac3sinleft(fracA+B+C6right)=6$$
We have that
$$f(x)=frac1sin x$$
is convex then by Jensen's inequality
$$fracfrac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)3ge frac1sinleft(fracA+B+C6right)$$
and then
$$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac3sinleft(fracA+B+C6right)=6$$
answered Jul 25 at 20:22
gimusi
65k73583
65k73583
add a comment |Â
add a comment |Â
up vote
0
down vote
Also, by AM-GM in the standard notation we obtain:
$$sum_cycfrac1sinfracalpha2geqfrac3sqrt[3]prodlimits_cycsinfracalpha2=frac3sqrt[3]fracr4Rgeqfrac3sqrt[3]frac14cdot2=6.$$
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
add a comment |Â
up vote
0
down vote
Also, by AM-GM in the standard notation we obtain:
$$sum_cycfrac1sinfracalpha2geqfrac3sqrt[3]prodlimits_cycsinfracalpha2=frac3sqrt[3]fracr4Rgeqfrac3sqrt[3]frac14cdot2=6.$$
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Also, by AM-GM in the standard notation we obtain:
$$sum_cycfrac1sinfracalpha2geqfrac3sqrt[3]prodlimits_cycsinfracalpha2=frac3sqrt[3]fracr4Rgeqfrac3sqrt[3]frac14cdot2=6.$$
Also, by AM-GM in the standard notation we obtain:
$$sum_cycfrac1sinfracalpha2geqfrac3sqrt[3]prodlimits_cycsinfracalpha2=frac3sqrt[3]fracr4Rgeqfrac3sqrt[3]frac14cdot2=6.$$
answered Jul 25 at 20:40
Michael Rozenberg
87.8k1578180
87.8k1578180
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
add a comment |Â
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
Why someone down vote?
– Michael Rozenberg
Jul 28 at 3:32
add a comment |Â
up vote
0
down vote
We use $$sinleft(fracA2right)=sqrtfrac(s-b)(s-c)bc$$ etc then we get by AM-GM:
$$frac13left(sqrtfracbc(s-b)(s-c)+sqrtfracac(s-a)(s-c)+sqrtfracab(s-a)(s-b)right)geq sqrt[3]fracabc(s-a)(s-b)(s-c)geq 2$$
if $$fracabc(s-a)(s-b)(s-c)geq 8$$
and this is $$abcgeq (-a+b+c)(a-b+c)(a+b-c)$$
using the Substitution
$$a=y+z,b=x+z,c=x+y$$
we get
$$(x+y)(x+z)(z+x)geq 8xyz$$ and this is AM-GM!
Note that $$s=fraca+b+c2$$
add a comment |Â
up vote
0
down vote
We use $$sinleft(fracA2right)=sqrtfrac(s-b)(s-c)bc$$ etc then we get by AM-GM:
$$frac13left(sqrtfracbc(s-b)(s-c)+sqrtfracac(s-a)(s-c)+sqrtfracab(s-a)(s-b)right)geq sqrt[3]fracabc(s-a)(s-b)(s-c)geq 2$$
if $$fracabc(s-a)(s-b)(s-c)geq 8$$
and this is $$abcgeq (-a+b+c)(a-b+c)(a+b-c)$$
using the Substitution
$$a=y+z,b=x+z,c=x+y$$
we get
$$(x+y)(x+z)(z+x)geq 8xyz$$ and this is AM-GM!
Note that $$s=fraca+b+c2$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
We use $$sinleft(fracA2right)=sqrtfrac(s-b)(s-c)bc$$ etc then we get by AM-GM:
$$frac13left(sqrtfracbc(s-b)(s-c)+sqrtfracac(s-a)(s-c)+sqrtfracab(s-a)(s-b)right)geq sqrt[3]fracabc(s-a)(s-b)(s-c)geq 2$$
if $$fracabc(s-a)(s-b)(s-c)geq 8$$
and this is $$abcgeq (-a+b+c)(a-b+c)(a+b-c)$$
using the Substitution
$$a=y+z,b=x+z,c=x+y$$
we get
$$(x+y)(x+z)(z+x)geq 8xyz$$ and this is AM-GM!
Note that $$s=fraca+b+c2$$
We use $$sinleft(fracA2right)=sqrtfrac(s-b)(s-c)bc$$ etc then we get by AM-GM:
$$frac13left(sqrtfracbc(s-b)(s-c)+sqrtfracac(s-a)(s-c)+sqrtfracab(s-a)(s-b)right)geq sqrt[3]fracabc(s-a)(s-b)(s-c)geq 2$$
if $$fracabc(s-a)(s-b)(s-c)geq 8$$
and this is $$abcgeq (-a+b+c)(a-b+c)(a+b-c)$$
using the Substitution
$$a=y+z,b=x+z,c=x+y$$
we get
$$(x+y)(x+z)(z+x)geq 8xyz$$ and this is AM-GM!
Note that $$s=fraca+b+c2$$
answered Jul 25 at 20:45


Dr. Sonnhard Graubner
66.7k32659
66.7k32659
add a comment |Â
add a comment |Â
up vote
0
down vote
Applying Lagrange Multipliers shows that $$ sin(A/2) + sin (B/2) + sin (B/2)$$ is maximized when the triangle is equilateral in which case we have $$ sin(A/2) + sin (B/2) + sin (B/2)=3/2$$
The Arithmetic Harmonic inequality implies $$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac9sin(A/2) +sin(B/2)+sin(C/2)ge frac 9(3/2)=6$$
add a comment |Â
up vote
0
down vote
Applying Lagrange Multipliers shows that $$ sin(A/2) + sin (B/2) + sin (B/2)$$ is maximized when the triangle is equilateral in which case we have $$ sin(A/2) + sin (B/2) + sin (B/2)=3/2$$
The Arithmetic Harmonic inequality implies $$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac9sin(A/2) +sin(B/2)+sin(C/2)ge frac 9(3/2)=6$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Applying Lagrange Multipliers shows that $$ sin(A/2) + sin (B/2) + sin (B/2)$$ is maximized when the triangle is equilateral in which case we have $$ sin(A/2) + sin (B/2) + sin (B/2)=3/2$$
The Arithmetic Harmonic inequality implies $$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac9sin(A/2) +sin(B/2)+sin(C/2)ge frac 9(3/2)=6$$
Applying Lagrange Multipliers shows that $$ sin(A/2) + sin (B/2) + sin (B/2)$$ is maximized when the triangle is equilateral in which case we have $$ sin(A/2) + sin (B/2) + sin (B/2)=3/2$$
The Arithmetic Harmonic inequality implies $$frac1sin left( fracA2 right)+frac1sin left( fracB2 right)+frac1sin left( fracC2 right)ge frac9sin(A/2) +sin(B/2)+sin(C/2)ge frac 9(3/2)=6$$
answered Jul 25 at 20:47


Mohammad Riazi-Kermani
27.4k41852
27.4k41852
add a comment |Â
add a comment |Â
Martin R ...may i ask a question : How did you find that my question is duplicate i have searched the site many times????
– Johnny chad
Jul 25 at 20:39
With Approach0: approach0.xyz/search/… – See also math.meta.stackexchange.com/questions/24978/….
– Martin R
Jul 25 at 20:45