Proving a line perpendicular to another in a circle
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I got a question at an exam recently, and was unable to solve it.
Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.
Here's the diagram:
I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.
Please help.
geometry contest-math
add a comment |Â
up vote
1
down vote
favorite
I got a question at an exam recently, and was unable to solve it.
Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.
Here's the diagram:
I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.
Please help.
geometry contest-math
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I got a question at an exam recently, and was unable to solve it.
Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.
Here's the diagram:
I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.
Please help.
geometry contest-math
I got a question at an exam recently, and was unable to solve it.
Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.
Here's the diagram:
I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.
Please help.
geometry contest-math
asked Aug 3 at 16:08


MalayTheDynamo
2,011732
2,011732
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
Proof
Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
By $(1),(2)$,we have $$PQ // LCperp AL.$$
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
add a comment |Â
up vote
0
down vote
Diagram
The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Proof
Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
By $(1),(2)$,we have $$PQ // LCperp AL.$$
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
add a comment |Â
up vote
1
down vote
Proof
Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
By $(1),(2)$,we have $$PQ // LCperp AL.$$
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Proof
Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
By $(1),(2)$,we have $$PQ // LCperp AL.$$
Proof
Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
By $(1),(2)$,we have $$PQ // LCperp AL.$$
edited Aug 3 at 17:45
answered Aug 3 at 17:19
mengdie1982
2,815216
2,815216
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
add a comment |Â
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
Shouldn't it be $CKcdot KA=NKcdot KL$?
– MalayTheDynamo
Aug 3 at 17:41
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
@MalayTheDynamo yes. Corrected.
– mengdie1982
Aug 3 at 17:44
add a comment |Â
up vote
0
down vote
Diagram
The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
add a comment |Â
up vote
0
down vote
Diagram
The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Diagram
The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$
Diagram
The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$
edited Aug 3 at 18:24
answered Aug 3 at 18:12


GinoCHJ
12
12
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
add a comment |Â
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
Please elaborate.
– MalayTheDynamo
Aug 3 at 18:15
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
I changed. It is more clear, I think
– GinoCHJ
Aug 3 at 18:25
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
How is $CLperp AL$?
– MalayTheDynamo
Aug 4 at 4:58
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
$Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
– GinoCHJ
2 days ago
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871241%2fproving-a-line-perpendicular-to-another-in-a-circle%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password