Proving a line perpendicular to another in a circle

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












I got a question at an exam recently, and was unable to solve it.




Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.




Here's the diagram:



Diagram



I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.



Please help.







share|cite|improve this question























    up vote
    1
    down vote

    favorite
    1












    I got a question at an exam recently, and was unable to solve it.




    Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.




    Here's the diagram:



    Diagram



    I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.



    Please help.







    share|cite|improve this question





















      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      I got a question at an exam recently, and was unable to solve it.




      Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.




      Here's the diagram:



      Diagram



      I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.



      Please help.







      share|cite|improve this question











      I got a question at an exam recently, and was unable to solve it.




      Let $Gamma_1$ be a circle with a chord $CD$ and a diameter $ABperp CD$ at $N$, with $ANgeq BN$. A circle $Gamma_2$ is drawn with centre $C$ and radius $CN$. It intersects $Gamma_1$ at $P,Q$. $PQ$ intersects $CD$ at $M$ and $AC$ at $K$. $NK$ extended meets $Gamma_2$ at $L$. Prove that $ALperp PQ$.




      Here's the diagram:



      Diagram



      I tried various approaches, like proving $AL$ tangent to $Gamma_2$, Proving $OC||AL$, proving $QP||BF$, proving $QB=PF$, proving $CNAL$ cyclic, all to no avail.



      Please help.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Aug 3 at 16:08









      MalayTheDynamo

      2,011732




      2,011732




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote













          Proof



          Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
          Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
          then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
          By $(1),(2)$,we have $$PQ // LCperp AL.$$






          share|cite|improve this answer























          • Shouldn't it be $CKcdot KA=NKcdot KL$?
            – MalayTheDynamo
            Aug 3 at 17:41











          • @MalayTheDynamo yes. Corrected.
            – mengdie1982
            Aug 3 at 17:44

















          up vote
          0
          down vote













          Diagram



          The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$






          share|cite|improve this answer























          • Please elaborate.
            – MalayTheDynamo
            Aug 3 at 18:15










          • I changed. It is more clear, I think
            – GinoCHJ
            Aug 3 at 18:25










          • How is $CLperp AL$?
            – MalayTheDynamo
            Aug 4 at 4:58










          • $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
            – GinoCHJ
            2 days ago










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871241%2fproving-a-line-perpendicular-to-another-in-a-circle%23new-answer', 'question_page');

          );

          Post as a guest






























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          Proof



          Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
          Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
          then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
          By $(1),(2)$,we have $$PQ // LCperp AL.$$






          share|cite|improve this answer























          • Shouldn't it be $CKcdot KA=NKcdot KL$?
            – MalayTheDynamo
            Aug 3 at 17:41











          • @MalayTheDynamo yes. Corrected.
            – mengdie1982
            Aug 3 at 17:44














          up vote
          1
          down vote













          Proof



          Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
          Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
          then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
          By $(1),(2)$,we have $$PQ // LCperp AL.$$






          share|cite|improve this answer























          • Shouldn't it be $CKcdot KA=NKcdot KL$?
            – MalayTheDynamo
            Aug 3 at 17:41











          • @MalayTheDynamo yes. Corrected.
            – mengdie1982
            Aug 3 at 17:44












          up vote
          1
          down vote










          up vote
          1
          down vote









          Proof



          Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
          Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
          then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
          By $(1),(2)$,we have $$PQ // LCperp AL.$$






          share|cite|improve this answer















          Proof



          Let $CD$ intersect $Gamma_2$ at a second point $S$. Notice that $PQ$ is the radical axis of $Gamma_1$ and $Gamma_2$. Thus $$(overlineCN+overlineCM)cdot(overlineCN-overlineCM) =overlineSMcdot overlineMN=overlineCMcdot overlineMD=(overlineCN-overlineMN)cdot(overlineCN+overlineMN), $$which implies $$overlineCM=overlineMN.tag1$$
          Morover, since$$overlineCKcdotoverlineKA=overlineNKcdotoverlineKL,$$
          then $A,N,C,L$ are concyclic. Therefore $$angle ALC=angle BNC=90^o,$$ which shows that $AL$ is tangent to $Gamma_2$. By the symmetry of the tangents $AL,AN$, we may obtain $$overlineLK=overlineKN.tag2$$
          By $(1),(2)$,we have $$PQ // LCperp AL.$$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 3 at 17:45


























          answered Aug 3 at 17:19









          mengdie1982

          2,815216




          2,815216











          • Shouldn't it be $CKcdot KA=NKcdot KL$?
            – MalayTheDynamo
            Aug 3 at 17:41











          • @MalayTheDynamo yes. Corrected.
            – mengdie1982
            Aug 3 at 17:44
















          • Shouldn't it be $CKcdot KA=NKcdot KL$?
            – MalayTheDynamo
            Aug 3 at 17:41











          • @MalayTheDynamo yes. Corrected.
            – mengdie1982
            Aug 3 at 17:44















          Shouldn't it be $CKcdot KA=NKcdot KL$?
          – MalayTheDynamo
          Aug 3 at 17:41





          Shouldn't it be $CKcdot KA=NKcdot KL$?
          – MalayTheDynamo
          Aug 3 at 17:41













          @MalayTheDynamo yes. Corrected.
          – mengdie1982
          Aug 3 at 17:44




          @MalayTheDynamo yes. Corrected.
          – mengdie1982
          Aug 3 at 17:44










          up vote
          0
          down vote













          Diagram



          The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$






          share|cite|improve this answer























          • Please elaborate.
            – MalayTheDynamo
            Aug 3 at 18:15










          • I changed. It is more clear, I think
            – GinoCHJ
            Aug 3 at 18:25










          • How is $CLperp AL$?
            – MalayTheDynamo
            Aug 4 at 4:58










          • $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
            – GinoCHJ
            2 days ago














          up vote
          0
          down vote













          Diagram



          The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$






          share|cite|improve this answer























          • Please elaborate.
            – MalayTheDynamo
            Aug 3 at 18:15










          • I changed. It is more clear, I think
            – GinoCHJ
            Aug 3 at 18:25










          • How is $CLperp AL$?
            – MalayTheDynamo
            Aug 4 at 4:58










          • $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
            – GinoCHJ
            2 days ago












          up vote
          0
          down vote










          up vote
          0
          down vote









          Diagram



          The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$






          share|cite|improve this answer















          Diagram



          The diagram shows, $AG parallel DF$ so $ChatFL = EhatAG = delta$ and $EhatMF = EhatGA = gamma$. We can note that $Cl perp AL$ and $Delta CLF$ and $CL perp AL$ then $gamma + delta = 90°$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Aug 3 at 18:24


























          answered Aug 3 at 18:12









          GinoCHJ

          12




          12











          • Please elaborate.
            – MalayTheDynamo
            Aug 3 at 18:15










          • I changed. It is more clear, I think
            – GinoCHJ
            Aug 3 at 18:25










          • How is $CLperp AL$?
            – MalayTheDynamo
            Aug 4 at 4:58










          • $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
            – GinoCHJ
            2 days ago
















          • Please elaborate.
            – MalayTheDynamo
            Aug 3 at 18:15










          • I changed. It is more clear, I think
            – GinoCHJ
            Aug 3 at 18:25










          • How is $CLperp AL$?
            – MalayTheDynamo
            Aug 4 at 4:58










          • $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
            – GinoCHJ
            2 days ago















          Please elaborate.
          – MalayTheDynamo
          Aug 3 at 18:15




          Please elaborate.
          – MalayTheDynamo
          Aug 3 at 18:15












          I changed. It is more clear, I think
          – GinoCHJ
          Aug 3 at 18:25




          I changed. It is more clear, I think
          – GinoCHJ
          Aug 3 at 18:25












          How is $CLperp AL$?
          – MalayTheDynamo
          Aug 4 at 4:58




          How is $CLperp AL$?
          – MalayTheDynamo
          Aug 4 at 4:58












          $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
          – GinoCHJ
          2 days ago




          $Delta ANC$ is similar than $Delta NKA$ ($KhatNA = 90° - beta$) than $NK perp AK$, then $NK = KL$ hence $CL perp AL$
          – GinoCHJ
          2 days ago












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871241%2fproving-a-line-perpendicular-to-another-in-a-circle%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?