Shorter Way to Solve $lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
The limit to find is
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
What I've tried was using the factorisation for $a^3-b^3$ and $a^2-b^2$ like so:
$$lim_xto 0frac(x-ln(1+x))(x^2+xln(x+1)+ln^2(x+1))(sin x-x)(sin x+x)$$
but I don't know how to make a product of this so I get something meaningful (like a standard limit or something).
Lastly I've tried l'Hospital's rule and it works in the end, but after the second time the numerator and denominator are pretty long. Is there maybe a shorter solution to this?
limits
add a comment |Â
up vote
3
down vote
favorite
The limit to find is
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
What I've tried was using the factorisation for $a^3-b^3$ and $a^2-b^2$ like so:
$$lim_xto 0frac(x-ln(1+x))(x^2+xln(x+1)+ln^2(x+1))(sin x-x)(sin x+x)$$
but I don't know how to make a product of this so I get something meaningful (like a standard limit or something).
Lastly I've tried l'Hospital's rule and it works in the end, but after the second time the numerator and denominator are pretty long. Is there maybe a shorter solution to this?
limits
The Limit should be $$-frac92$$
– Dr. Sonnhard Graubner
Aug 2 at 15:36
3
I've changed the title to reflect that you've solved it but want a shorter way to do so
– Jam
Aug 2 at 15:43
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
The limit to find is
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
What I've tried was using the factorisation for $a^3-b^3$ and $a^2-b^2$ like so:
$$lim_xto 0frac(x-ln(1+x))(x^2+xln(x+1)+ln^2(x+1))(sin x-x)(sin x+x)$$
but I don't know how to make a product of this so I get something meaningful (like a standard limit or something).
Lastly I've tried l'Hospital's rule and it works in the end, but after the second time the numerator and denominator are pretty long. Is there maybe a shorter solution to this?
limits
The limit to find is
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
What I've tried was using the factorisation for $a^3-b^3$ and $a^2-b^2$ like so:
$$lim_xto 0frac(x-ln(1+x))(x^2+xln(x+1)+ln^2(x+1))(sin x-x)(sin x+x)$$
but I don't know how to make a product of this so I get something meaningful (like a standard limit or something).
Lastly I've tried l'Hospital's rule and it works in the end, but after the second time the numerator and denominator are pretty long. Is there maybe a shorter solution to this?
limits
edited Aug 2 at 15:43


Jam
4,10111230
4,10111230
asked Aug 2 at 15:26
NotADeveloper
5321210
5321210
The Limit should be $$-frac92$$
– Dr. Sonnhard Graubner
Aug 2 at 15:36
3
I've changed the title to reflect that you've solved it but want a shorter way to do so
– Jam
Aug 2 at 15:43
add a comment |Â
The Limit should be $$-frac92$$
– Dr. Sonnhard Graubner
Aug 2 at 15:36
3
I've changed the title to reflect that you've solved it but want a shorter way to do so
– Jam
Aug 2 at 15:43
The Limit should be $$-frac92$$
– Dr. Sonnhard Graubner
Aug 2 at 15:36
The Limit should be $$-frac92$$
– Dr. Sonnhard Graubner
Aug 2 at 15:36
3
3
I've changed the title to reflect that you've solved it but want a shorter way to do so
– Jam
Aug 2 at 15:43
I've changed the title to reflect that you've solved it but want a shorter way to do so
– Jam
Aug 2 at 15:43
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
2
down vote
accepted
Taylor Series around $0$ of $ln(1+x)$:
$$ln(1+x) = x - fracx^22 + O(x^3)$$
$$ln^3(1+x) = x^3 -frac32x^4 + O(x^5)$$
Taylor Series around $0$ of $sin(x)$:
$$sin(x) = x - fracx^36 + O(x^5)$$
$$sin^2(x) = x^2 - fracx^43 + O(x^6)$$
So
$$fracx^3 - ln^3(1+x) sin^2(x) - x^2 simeq fracx^3 - x^3 +frac32x^4x^2 - fracx^43 - x^2 = fracfrac32x^4- fracx^43 = - frac92$$
add a comment |Â
up vote
3
down vote
Divide numerator and denominator by $x^4$ and then the denominator is handled as $$fracsin x-xx^3cdotfracsin x +x x to (-1/6)(2)=-frac13$$ The numerator on the other hand is handled as $$fracx-log(1+x)x^2cdotfrac x^2+xlog(1+x)+log^2(1+x) x^2 tofrac12cdot(1+1+1)=frac32$$ and hence the desired limit is $-9/2$.
add a comment |Â
up vote
2
down vote
You could use Taylor series at $x=0$ to compute the limit. Commonly used Taylor Series
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
By using Taylor series we get
$$-frac92+frac21x4-frac249x^240+frac13x^32-.....O(x^6)$$at $x=0$ we get
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2=-frac92$$
add a comment |Â
up vote
2
down vote
Using $sin(x)=x-fracx^36+mathcalO(x^5)$ and $ln(1+x)=x-fracx^22+mathcalO(x^3)$:
$$beginalignedfracx^3-ln^3(1+x)sin^2(x)-x^2
&=fracx^3-left(x-fracx^22+mathcalO(x^3)right)^3left(x-fracx^36+mathcalO(x^5)right)^2-x^2\
&=fracx^3-left(x^3- frac3 x^42+mathcalO(x^5)right)left(x^2-fracx^43+mathcalO(x^6)right)-x^2\
&=fracfrac3 x^42+mathcalO(x^5)-fracx^43+mathcalO(x^6)
endaligned$$
add a comment |Â
up vote
1
down vote
Hint: By a series Expansion we get
$-frac92+frac214x-frac24940x^2+frac132x^3-frac186192800x^4+frac336475040x^5+...$
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Taylor Series around $0$ of $ln(1+x)$:
$$ln(1+x) = x - fracx^22 + O(x^3)$$
$$ln^3(1+x) = x^3 -frac32x^4 + O(x^5)$$
Taylor Series around $0$ of $sin(x)$:
$$sin(x) = x - fracx^36 + O(x^5)$$
$$sin^2(x) = x^2 - fracx^43 + O(x^6)$$
So
$$fracx^3 - ln^3(1+x) sin^2(x) - x^2 simeq fracx^3 - x^3 +frac32x^4x^2 - fracx^43 - x^2 = fracfrac32x^4- fracx^43 = - frac92$$
add a comment |Â
up vote
2
down vote
accepted
Taylor Series around $0$ of $ln(1+x)$:
$$ln(1+x) = x - fracx^22 + O(x^3)$$
$$ln^3(1+x) = x^3 -frac32x^4 + O(x^5)$$
Taylor Series around $0$ of $sin(x)$:
$$sin(x) = x - fracx^36 + O(x^5)$$
$$sin^2(x) = x^2 - fracx^43 + O(x^6)$$
So
$$fracx^3 - ln^3(1+x) sin^2(x) - x^2 simeq fracx^3 - x^3 +frac32x^4x^2 - fracx^43 - x^2 = fracfrac32x^4- fracx^43 = - frac92$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Taylor Series around $0$ of $ln(1+x)$:
$$ln(1+x) = x - fracx^22 + O(x^3)$$
$$ln^3(1+x) = x^3 -frac32x^4 + O(x^5)$$
Taylor Series around $0$ of $sin(x)$:
$$sin(x) = x - fracx^36 + O(x^5)$$
$$sin^2(x) = x^2 - fracx^43 + O(x^6)$$
So
$$fracx^3 - ln^3(1+x) sin^2(x) - x^2 simeq fracx^3 - x^3 +frac32x^4x^2 - fracx^43 - x^2 = fracfrac32x^4- fracx^43 = - frac92$$
Taylor Series around $0$ of $ln(1+x)$:
$$ln(1+x) = x - fracx^22 + O(x^3)$$
$$ln^3(1+x) = x^3 -frac32x^4 + O(x^5)$$
Taylor Series around $0$ of $sin(x)$:
$$sin(x) = x - fracx^36 + O(x^5)$$
$$sin^2(x) = x^2 - fracx^43 + O(x^6)$$
So
$$fracx^3 - ln^3(1+x) sin^2(x) - x^2 simeq fracx^3 - x^3 +frac32x^4x^2 - fracx^43 - x^2 = fracfrac32x^4- fracx^43 = - frac92$$
answered Aug 2 at 15:50


Ahmad Bazzi
2,172417
2,172417
add a comment |Â
add a comment |Â
up vote
3
down vote
Divide numerator and denominator by $x^4$ and then the denominator is handled as $$fracsin x-xx^3cdotfracsin x +x x to (-1/6)(2)=-frac13$$ The numerator on the other hand is handled as $$fracx-log(1+x)x^2cdotfrac x^2+xlog(1+x)+log^2(1+x) x^2 tofrac12cdot(1+1+1)=frac32$$ and hence the desired limit is $-9/2$.
add a comment |Â
up vote
3
down vote
Divide numerator and denominator by $x^4$ and then the denominator is handled as $$fracsin x-xx^3cdotfracsin x +x x to (-1/6)(2)=-frac13$$ The numerator on the other hand is handled as $$fracx-log(1+x)x^2cdotfrac x^2+xlog(1+x)+log^2(1+x) x^2 tofrac12cdot(1+1+1)=frac32$$ and hence the desired limit is $-9/2$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Divide numerator and denominator by $x^4$ and then the denominator is handled as $$fracsin x-xx^3cdotfracsin x +x x to (-1/6)(2)=-frac13$$ The numerator on the other hand is handled as $$fracx-log(1+x)x^2cdotfrac x^2+xlog(1+x)+log^2(1+x) x^2 tofrac12cdot(1+1+1)=frac32$$ and hence the desired limit is $-9/2$.
Divide numerator and denominator by $x^4$ and then the denominator is handled as $$fracsin x-xx^3cdotfracsin x +x x to (-1/6)(2)=-frac13$$ The numerator on the other hand is handled as $$fracx-log(1+x)x^2cdotfrac x^2+xlog(1+x)+log^2(1+x) x^2 tofrac12cdot(1+1+1)=frac32$$ and hence the desired limit is $-9/2$.
answered Aug 2 at 17:00


Paramanand Singh
45k553142
45k553142
add a comment |Â
add a comment |Â
up vote
2
down vote
You could use Taylor series at $x=0$ to compute the limit. Commonly used Taylor Series
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
By using Taylor series we get
$$-frac92+frac21x4-frac249x^240+frac13x^32-.....O(x^6)$$at $x=0$ we get
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2=-frac92$$
add a comment |Â
up vote
2
down vote
You could use Taylor series at $x=0$ to compute the limit. Commonly used Taylor Series
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
By using Taylor series we get
$$-frac92+frac21x4-frac249x^240+frac13x^32-.....O(x^6)$$at $x=0$ we get
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2=-frac92$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
You could use Taylor series at $x=0$ to compute the limit. Commonly used Taylor Series
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
By using Taylor series we get
$$-frac92+frac21x4-frac249x^240+frac13x^32-.....O(x^6)$$at $x=0$ we get
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2=-frac92$$
You could use Taylor series at $x=0$ to compute the limit. Commonly used Taylor Series
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2$$
By using Taylor series we get
$$-frac92+frac21x4-frac249x^240+frac13x^32-.....O(x^6)$$at $x=0$ we get
$$lim_xto 0 fracx^3-ln^3(1+x)sin^2x-x^2=-frac92$$
answered Aug 2 at 15:48
Key Flex
3,692422
3,692422
add a comment |Â
add a comment |Â
up vote
2
down vote
Using $sin(x)=x-fracx^36+mathcalO(x^5)$ and $ln(1+x)=x-fracx^22+mathcalO(x^3)$:
$$beginalignedfracx^3-ln^3(1+x)sin^2(x)-x^2
&=fracx^3-left(x-fracx^22+mathcalO(x^3)right)^3left(x-fracx^36+mathcalO(x^5)right)^2-x^2\
&=fracx^3-left(x^3- frac3 x^42+mathcalO(x^5)right)left(x^2-fracx^43+mathcalO(x^6)right)-x^2\
&=fracfrac3 x^42+mathcalO(x^5)-fracx^43+mathcalO(x^6)
endaligned$$
add a comment |Â
up vote
2
down vote
Using $sin(x)=x-fracx^36+mathcalO(x^5)$ and $ln(1+x)=x-fracx^22+mathcalO(x^3)$:
$$beginalignedfracx^3-ln^3(1+x)sin^2(x)-x^2
&=fracx^3-left(x-fracx^22+mathcalO(x^3)right)^3left(x-fracx^36+mathcalO(x^5)right)^2-x^2\
&=fracx^3-left(x^3- frac3 x^42+mathcalO(x^5)right)left(x^2-fracx^43+mathcalO(x^6)right)-x^2\
&=fracfrac3 x^42+mathcalO(x^5)-fracx^43+mathcalO(x^6)
endaligned$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Using $sin(x)=x-fracx^36+mathcalO(x^5)$ and $ln(1+x)=x-fracx^22+mathcalO(x^3)$:
$$beginalignedfracx^3-ln^3(1+x)sin^2(x)-x^2
&=fracx^3-left(x-fracx^22+mathcalO(x^3)right)^3left(x-fracx^36+mathcalO(x^5)right)^2-x^2\
&=fracx^3-left(x^3- frac3 x^42+mathcalO(x^5)right)left(x^2-fracx^43+mathcalO(x^6)right)-x^2\
&=fracfrac3 x^42+mathcalO(x^5)-fracx^43+mathcalO(x^6)
endaligned$$
Using $sin(x)=x-fracx^36+mathcalO(x^5)$ and $ln(1+x)=x-fracx^22+mathcalO(x^3)$:
$$beginalignedfracx^3-ln^3(1+x)sin^2(x)-x^2
&=fracx^3-left(x-fracx^22+mathcalO(x^3)right)^3left(x-fracx^36+mathcalO(x^5)right)^2-x^2\
&=fracx^3-left(x^3- frac3 x^42+mathcalO(x^5)right)left(x^2-fracx^43+mathcalO(x^6)right)-x^2\
&=fracfrac3 x^42+mathcalO(x^5)-fracx^43+mathcalO(x^6)
endaligned$$
edited Aug 2 at 16:13
answered Aug 2 at 15:57


Jam
4,10111230
4,10111230
add a comment |Â
add a comment |Â
up vote
1
down vote
Hint: By a series Expansion we get
$-frac92+frac214x-frac24940x^2+frac132x^3-frac186192800x^4+frac336475040x^5+...$
add a comment |Â
up vote
1
down vote
Hint: By a series Expansion we get
$-frac92+frac214x-frac24940x^2+frac132x^3-frac186192800x^4+frac336475040x^5+...$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint: By a series Expansion we get
$-frac92+frac214x-frac24940x^2+frac132x^3-frac186192800x^4+frac336475040x^5+...$
Hint: By a series Expansion we get
$-frac92+frac214x-frac24940x^2+frac132x^3-frac186192800x^4+frac336475040x^5+...$
answered Aug 2 at 15:48


Dr. Sonnhard Graubner
66.6k32659
66.6k32659
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870180%2fshorter-way-to-solve-lim-x-to-0-fracx3-ln31x-sin2x-x2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
The Limit should be $$-frac92$$
– Dr. Sonnhard Graubner
Aug 2 at 15:36
3
I've changed the title to reflect that you've solved it but want a shorter way to do so
– Jam
Aug 2 at 15:43