The probability density function of a random variable is given by $f_X(x) = frac3208x^2$ Find $E(X)$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
My attempt
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
Would this be right?
probability expectation
add a comment |Â
up vote
2
down vote
favorite
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
My attempt
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
Would this be right?
probability expectation
4
Yes, you are right.
– Kavi Rama Murthy
Jul 25 at 23:34
2
Yes. Place it in the answer and accept it.
– Graham Kemp
Jul 25 at 23:58
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
My attempt
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
Would this be right?
probability expectation
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
My attempt
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
Would this be right?
probability expectation
asked Jul 25 at 23:32
Bas bas
39611
39611
4
Yes, you are right.
– Kavi Rama Murthy
Jul 25 at 23:34
2
Yes. Place it in the answer and accept it.
– Graham Kemp
Jul 25 at 23:58
add a comment |Â
4
Yes, you are right.
– Kavi Rama Murthy
Jul 25 at 23:34
2
Yes. Place it in the answer and accept it.
– Graham Kemp
Jul 25 at 23:58
4
4
Yes, you are right.
– Kavi Rama Murthy
Jul 25 at 23:34
Yes, you are right.
– Kavi Rama Murthy
Jul 25 at 23:34
2
2
Yes. Place it in the answer and accept it.
– Graham Kemp
Jul 25 at 23:58
Yes. Place it in the answer and accept it.
– Graham Kemp
Jul 25 at 23:58
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
add a comment |Â
up vote
1
down vote
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
The probability density function of a random variable is given by $$f_X(x) = frac3208x^2$$ whenever $2 < x < 6$. $0$ otherwise
$(a)$ Compute $E(X)$
$(b)$ Compute $E[X(X+1)]$
$(a)$
$$E(X) = int_2^6 xfrac3208x^2dx = frac3208cdotfrac14(x^4)bigg|_2^6 = 60/13$$
$(b)$
$$E(X(X+1)) = E(X^2 + X) = E(X^2) + E(X) $$
$$E(X^2) = int_2^6x^2 frac3208x^2 dx = frac3208frac15(x^5)bigg|_2^6 = 1452/65$$
Thus, $$E(X^2) + E(X) = 1452/65 + 60/13 approx 26.9538 $$
answered Jul 26 at 7:20
Bas bas
39611
39611
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862931%2fthe-probability-density-function-of-a-random-variable-is-given-by-f-xx-fra%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
4
Yes, you are right.
– Kavi Rama Murthy
Jul 25 at 23:34
2
Yes. Place it in the answer and accept it.
– Graham Kemp
Jul 25 at 23:58