Type 1 error condition in one tailed statistical hypothesis test
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Consider the following classical statistical test setup:
One assumes a coin to be unfair in the sense that heads, say, occurs more frequently than tails. Thus we set $H_0: pleqfrac12$ as null hypothesis and $H_1:p>frac12$ as alternative where $p$ is the probability for heads.
Also let X count the occurence of heads when tossing the coin $n$ times. Given $n$ and a significance level $alpha$ we get the one-tail condition
beginequation
(1)quad P(Xgeq k)leqalpha
endequation
where $P$ has a $(n,p)$-binomial distribution with $pleqfrac12$ (thus yielding the probability for rejecting $H_0$ when it's actually true).
To solve $(1)$ for $k$ it would now be common (school book) practice to set $p=frac12$ and solve $(1)$ by inversion. But this isn't correct, as we just know $pleqfrac12$.
So wouldn't it be better to rather use a distribution for "$k$ wins out of $n$ with a probability of success $leqfrac12$" and which would that appropriate distribution be?
I want to be more precise: In a more general context the maximum $alpha$ error could be defined as
beginequation
alpha_max:=max_thetainTheta_0P_theta(T(X_1,dotsc,T_n)in K)
endequation
where $T$ is some kind of test statistic, in our case counting the number of heads in a sample $X_1,dotsc,X_n$; $Theta$ is the parameter space in question (our paramter is $psimtheta$), $Theta_0$ the subspace corresponding to the null hypothesis, i.e.
beginequation
H_0: thetainTheta_0,quad H_1:thetainThetasetminusTheta_0;
endequation
and finally $K$ is the region of rejection of $H_0$, i.e.
beginequation
H_0text is rejected iff T(X_1,dotsc,T_n)in K.
endequation
So in particular we have $Theta=[0,1], Theta_0=[0,frac12]$, yielding
beginequation
alpha_max=max_pleqfrac12sum_i=k^n B_n,p(X=i),
endequation
which should now be $leq$ a given significance level.
[Definitions from http://www.wiwi.uni-muenster.de/05/download/studium/advancedstatistics/ss09/kapitel_6.pdf - couldn't find equivalent in English]
probability statistics binomial-distribution
add a comment |Â
up vote
0
down vote
favorite
Consider the following classical statistical test setup:
One assumes a coin to be unfair in the sense that heads, say, occurs more frequently than tails. Thus we set $H_0: pleqfrac12$ as null hypothesis and $H_1:p>frac12$ as alternative where $p$ is the probability for heads.
Also let X count the occurence of heads when tossing the coin $n$ times. Given $n$ and a significance level $alpha$ we get the one-tail condition
beginequation
(1)quad P(Xgeq k)leqalpha
endequation
where $P$ has a $(n,p)$-binomial distribution with $pleqfrac12$ (thus yielding the probability for rejecting $H_0$ when it's actually true).
To solve $(1)$ for $k$ it would now be common (school book) practice to set $p=frac12$ and solve $(1)$ by inversion. But this isn't correct, as we just know $pleqfrac12$.
So wouldn't it be better to rather use a distribution for "$k$ wins out of $n$ with a probability of success $leqfrac12$" and which would that appropriate distribution be?
I want to be more precise: In a more general context the maximum $alpha$ error could be defined as
beginequation
alpha_max:=max_thetainTheta_0P_theta(T(X_1,dotsc,T_n)in K)
endequation
where $T$ is some kind of test statistic, in our case counting the number of heads in a sample $X_1,dotsc,X_n$; $Theta$ is the parameter space in question (our paramter is $psimtheta$), $Theta_0$ the subspace corresponding to the null hypothesis, i.e.
beginequation
H_0: thetainTheta_0,quad H_1:thetainThetasetminusTheta_0;
endequation
and finally $K$ is the region of rejection of $H_0$, i.e.
beginequation
H_0text is rejected iff T(X_1,dotsc,T_n)in K.
endequation
So in particular we have $Theta=[0,1], Theta_0=[0,frac12]$, yielding
beginequation
alpha_max=max_pleqfrac12sum_i=k^n B_n,p(X=i),
endequation
which should now be $leq$ a given significance level.
[Definitions from http://www.wiwi.uni-muenster.de/05/download/studium/advancedstatistics/ss09/kapitel_6.pdf - couldn't find equivalent in English]
probability statistics binomial-distribution
Jetzt musst du nur noch eine konkrete Frage zu der Ergänzung stellen. Hast du eingentlich schon mal beim Binomialtest in Wiki vorbei geschaut?
– callculus
Aug 4 at 16:00
Wieso du hier ein maximales $alpha$ suchst ist unklar. Beim Hypothesentest ist dieser von vorneherein schon fest gelegt, wie du auch bei meiner Ungleichung in der Antwort siehst.
– callculus
Aug 4 at 16:14
Ich verstehe es jetzt so: Das Signifikanzniveau (meist mit $alpha$ bezeichnet) gibt eine obere Schranke für die W., einen Fehler 1. Art zu begehen, sagen $alpha_1$. Da man aber unter Annahme von $H_0$ $p$ nicht genau kennt (man hat nur eine Ungleichung), schätzt man $alpha_1$ durch $alpha_max$ ab.
– Don Fuchs
Aug 4 at 17:46
Und aus Monotoniegründen ist nun die Summe $sum B_n,p(X=i)$ maximal für $p=p_0=frac12$ (bei festem $k$) (die W. für mind. $k$ mal Kopf steigt mit der Erfolgwahrscheinlichkeit).
– Don Fuchs
Aug 4 at 17:54
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Consider the following classical statistical test setup:
One assumes a coin to be unfair in the sense that heads, say, occurs more frequently than tails. Thus we set $H_0: pleqfrac12$ as null hypothesis and $H_1:p>frac12$ as alternative where $p$ is the probability for heads.
Also let X count the occurence of heads when tossing the coin $n$ times. Given $n$ and a significance level $alpha$ we get the one-tail condition
beginequation
(1)quad P(Xgeq k)leqalpha
endequation
where $P$ has a $(n,p)$-binomial distribution with $pleqfrac12$ (thus yielding the probability for rejecting $H_0$ when it's actually true).
To solve $(1)$ for $k$ it would now be common (school book) practice to set $p=frac12$ and solve $(1)$ by inversion. But this isn't correct, as we just know $pleqfrac12$.
So wouldn't it be better to rather use a distribution for "$k$ wins out of $n$ with a probability of success $leqfrac12$" and which would that appropriate distribution be?
I want to be more precise: In a more general context the maximum $alpha$ error could be defined as
beginequation
alpha_max:=max_thetainTheta_0P_theta(T(X_1,dotsc,T_n)in K)
endequation
where $T$ is some kind of test statistic, in our case counting the number of heads in a sample $X_1,dotsc,X_n$; $Theta$ is the parameter space in question (our paramter is $psimtheta$), $Theta_0$ the subspace corresponding to the null hypothesis, i.e.
beginequation
H_0: thetainTheta_0,quad H_1:thetainThetasetminusTheta_0;
endequation
and finally $K$ is the region of rejection of $H_0$, i.e.
beginequation
H_0text is rejected iff T(X_1,dotsc,T_n)in K.
endequation
So in particular we have $Theta=[0,1], Theta_0=[0,frac12]$, yielding
beginequation
alpha_max=max_pleqfrac12sum_i=k^n B_n,p(X=i),
endequation
which should now be $leq$ a given significance level.
[Definitions from http://www.wiwi.uni-muenster.de/05/download/studium/advancedstatistics/ss09/kapitel_6.pdf - couldn't find equivalent in English]
probability statistics binomial-distribution
Consider the following classical statistical test setup:
One assumes a coin to be unfair in the sense that heads, say, occurs more frequently than tails. Thus we set $H_0: pleqfrac12$ as null hypothesis and $H_1:p>frac12$ as alternative where $p$ is the probability for heads.
Also let X count the occurence of heads when tossing the coin $n$ times. Given $n$ and a significance level $alpha$ we get the one-tail condition
beginequation
(1)quad P(Xgeq k)leqalpha
endequation
where $P$ has a $(n,p)$-binomial distribution with $pleqfrac12$ (thus yielding the probability for rejecting $H_0$ when it's actually true).
To solve $(1)$ for $k$ it would now be common (school book) practice to set $p=frac12$ and solve $(1)$ by inversion. But this isn't correct, as we just know $pleqfrac12$.
So wouldn't it be better to rather use a distribution for "$k$ wins out of $n$ with a probability of success $leqfrac12$" and which would that appropriate distribution be?
I want to be more precise: In a more general context the maximum $alpha$ error could be defined as
beginequation
alpha_max:=max_thetainTheta_0P_theta(T(X_1,dotsc,T_n)in K)
endequation
where $T$ is some kind of test statistic, in our case counting the number of heads in a sample $X_1,dotsc,X_n$; $Theta$ is the parameter space in question (our paramter is $psimtheta$), $Theta_0$ the subspace corresponding to the null hypothesis, i.e.
beginequation
H_0: thetainTheta_0,quad H_1:thetainThetasetminusTheta_0;
endequation
and finally $K$ is the region of rejection of $H_0$, i.e.
beginequation
H_0text is rejected iff T(X_1,dotsc,T_n)in K.
endequation
So in particular we have $Theta=[0,1], Theta_0=[0,frac12]$, yielding
beginequation
alpha_max=max_pleqfrac12sum_i=k^n B_n,p(X=i),
endequation
which should now be $leq$ a given significance level.
[Definitions from http://www.wiwi.uni-muenster.de/05/download/studium/advancedstatistics/ss09/kapitel_6.pdf - couldn't find equivalent in English]
probability statistics binomial-distribution
edited Aug 4 at 15:09
asked Aug 2 at 15:07
Don Fuchs
234
234
Jetzt musst du nur noch eine konkrete Frage zu der Ergänzung stellen. Hast du eingentlich schon mal beim Binomialtest in Wiki vorbei geschaut?
– callculus
Aug 4 at 16:00
Wieso du hier ein maximales $alpha$ suchst ist unklar. Beim Hypothesentest ist dieser von vorneherein schon fest gelegt, wie du auch bei meiner Ungleichung in der Antwort siehst.
– callculus
Aug 4 at 16:14
Ich verstehe es jetzt so: Das Signifikanzniveau (meist mit $alpha$ bezeichnet) gibt eine obere Schranke für die W., einen Fehler 1. Art zu begehen, sagen $alpha_1$. Da man aber unter Annahme von $H_0$ $p$ nicht genau kennt (man hat nur eine Ungleichung), schätzt man $alpha_1$ durch $alpha_max$ ab.
– Don Fuchs
Aug 4 at 17:46
Und aus Monotoniegründen ist nun die Summe $sum B_n,p(X=i)$ maximal für $p=p_0=frac12$ (bei festem $k$) (die W. für mind. $k$ mal Kopf steigt mit der Erfolgwahrscheinlichkeit).
– Don Fuchs
Aug 4 at 17:54
add a comment |Â
Jetzt musst du nur noch eine konkrete Frage zu der Ergänzung stellen. Hast du eingentlich schon mal beim Binomialtest in Wiki vorbei geschaut?
– callculus
Aug 4 at 16:00
Wieso du hier ein maximales $alpha$ suchst ist unklar. Beim Hypothesentest ist dieser von vorneherein schon fest gelegt, wie du auch bei meiner Ungleichung in der Antwort siehst.
– callculus
Aug 4 at 16:14
Ich verstehe es jetzt so: Das Signifikanzniveau (meist mit $alpha$ bezeichnet) gibt eine obere Schranke für die W., einen Fehler 1. Art zu begehen, sagen $alpha_1$. Da man aber unter Annahme von $H_0$ $p$ nicht genau kennt (man hat nur eine Ungleichung), schätzt man $alpha_1$ durch $alpha_max$ ab.
– Don Fuchs
Aug 4 at 17:46
Und aus Monotoniegründen ist nun die Summe $sum B_n,p(X=i)$ maximal für $p=p_0=frac12$ (bei festem $k$) (die W. für mind. $k$ mal Kopf steigt mit der Erfolgwahrscheinlichkeit).
– Don Fuchs
Aug 4 at 17:54
Jetzt musst du nur noch eine konkrete Frage zu der Ergänzung stellen. Hast du eingentlich schon mal beim Binomialtest in Wiki vorbei geschaut?
– callculus
Aug 4 at 16:00
Jetzt musst du nur noch eine konkrete Frage zu der Ergänzung stellen. Hast du eingentlich schon mal beim Binomialtest in Wiki vorbei geschaut?
– callculus
Aug 4 at 16:00
Wieso du hier ein maximales $alpha$ suchst ist unklar. Beim Hypothesentest ist dieser von vorneherein schon fest gelegt, wie du auch bei meiner Ungleichung in der Antwort siehst.
– callculus
Aug 4 at 16:14
Wieso du hier ein maximales $alpha$ suchst ist unklar. Beim Hypothesentest ist dieser von vorneherein schon fest gelegt, wie du auch bei meiner Ungleichung in der Antwort siehst.
– callculus
Aug 4 at 16:14
Ich verstehe es jetzt so: Das Signifikanzniveau (meist mit $alpha$ bezeichnet) gibt eine obere Schranke für die W., einen Fehler 1. Art zu begehen, sagen $alpha_1$. Da man aber unter Annahme von $H_0$ $p$ nicht genau kennt (man hat nur eine Ungleichung), schätzt man $alpha_1$ durch $alpha_max$ ab.
– Don Fuchs
Aug 4 at 17:46
Ich verstehe es jetzt so: Das Signifikanzniveau (meist mit $alpha$ bezeichnet) gibt eine obere Schranke für die W., einen Fehler 1. Art zu begehen, sagen $alpha_1$. Da man aber unter Annahme von $H_0$ $p$ nicht genau kennt (man hat nur eine Ungleichung), schätzt man $alpha_1$ durch $alpha_max$ ab.
– Don Fuchs
Aug 4 at 17:46
Und aus Monotoniegründen ist nun die Summe $sum B_n,p(X=i)$ maximal für $p=p_0=frac12$ (bei festem $k$) (die W. für mind. $k$ mal Kopf steigt mit der Erfolgwahrscheinlichkeit).
– Don Fuchs
Aug 4 at 17:54
Und aus Monotoniegründen ist nun die Summe $sum B_n,p(X=i)$ maximal für $p=p_0=frac12$ (bei festem $k$) (die W. für mind. $k$ mal Kopf steigt mit der Erfolgwahrscheinlichkeit).
– Don Fuchs
Aug 4 at 17:54
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Both Null hypothesis are possible. The crucial point is the definition of the alternative hypothesis, $H_1$. This definition is unique as you can see at the table below. $$beginarray hline &H_0 &H_1 \ hline texttttwo-tailed & p=p_0 &pneq p_0 \ hline textttright-tailed & p=p_0 textor pleq p_0 &p>p_0 \ hline textttleft-tailed & p=p_0 textor pgeq p_0 &p<p_0 \ hline endarray$$
For the right-tailed case you evaluate the the smallest value of $c$, where
$$sum_i=c^n B(i| p_0,n)leq alpha$$
Then the critical range is $c, c+1, ldots, n $.
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
 |Â
show 3 more comments
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Both Null hypothesis are possible. The crucial point is the definition of the alternative hypothesis, $H_1$. This definition is unique as you can see at the table below. $$beginarray hline &H_0 &H_1 \ hline texttttwo-tailed & p=p_0 &pneq p_0 \ hline textttright-tailed & p=p_0 textor pleq p_0 &p>p_0 \ hline textttleft-tailed & p=p_0 textor pgeq p_0 &p<p_0 \ hline endarray$$
For the right-tailed case you evaluate the the smallest value of $c$, where
$$sum_i=c^n B(i| p_0,n)leq alpha$$
Then the critical range is $c, c+1, ldots, n $.
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
 |Â
show 3 more comments
up vote
0
down vote
Both Null hypothesis are possible. The crucial point is the definition of the alternative hypothesis, $H_1$. This definition is unique as you can see at the table below. $$beginarray hline &H_0 &H_1 \ hline texttttwo-tailed & p=p_0 &pneq p_0 \ hline textttright-tailed & p=p_0 textor pleq p_0 &p>p_0 \ hline textttleft-tailed & p=p_0 textor pgeq p_0 &p<p_0 \ hline endarray$$
For the right-tailed case you evaluate the the smallest value of $c$, where
$$sum_i=c^n B(i| p_0,n)leq alpha$$
Then the critical range is $c, c+1, ldots, n $.
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
 |Â
show 3 more comments
up vote
0
down vote
up vote
0
down vote
Both Null hypothesis are possible. The crucial point is the definition of the alternative hypothesis, $H_1$. This definition is unique as you can see at the table below. $$beginarray hline &H_0 &H_1 \ hline texttttwo-tailed & p=p_0 &pneq p_0 \ hline textttright-tailed & p=p_0 textor pleq p_0 &p>p_0 \ hline textttleft-tailed & p=p_0 textor pgeq p_0 &p<p_0 \ hline endarray$$
For the right-tailed case you evaluate the the smallest value of $c$, where
$$sum_i=c^n B(i| p_0,n)leq alpha$$
Then the critical range is $c, c+1, ldots, n $.
Both Null hypothesis are possible. The crucial point is the definition of the alternative hypothesis, $H_1$. This definition is unique as you can see at the table below. $$beginarray hline &H_0 &H_1 \ hline texttttwo-tailed & p=p_0 &pneq p_0 \ hline textttright-tailed & p=p_0 textor pleq p_0 &p>p_0 \ hline textttleft-tailed & p=p_0 textor pgeq p_0 &p<p_0 \ hline endarray$$
For the right-tailed case you evaluate the the smallest value of $c$, where
$$sum_i=c^n B(i| p_0,n)leq alpha$$
Then the critical range is $c, c+1, ldots, n $.
answered Aug 2 at 16:21


callculus
16.2k31427
16.2k31427
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
 |Â
show 3 more comments
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
Alright, but still the question remains why we use $p_0$ in your sum in the cases where $H_0:pleq p_0$ (or $geq$): In these cases we do not know the underlying probability distibution to calculate $P(H_0text is trueland H_0text is rejected)$.
– Don Fuchs
Aug 2 at 18:03
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
In your case $p_0=frac12$
– callculus
Aug 2 at 18:06
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
Of course, but what if $p=frac14<frac12=p_0$. Assuming $H_0$, for all we know this could be the case.
– Don Fuchs
Aug 2 at 18:13
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
@DonFuchs We don´t know the real value of $p$-before and after the test. The only statement we can make that is the following. If the estimated value of $pcdot n$ is in the interval $c, c+1, ldots, n $ we do not accept the Null hypothesis with a statistictial significance of $alpha$. Or we do not reject the alternative hypothesis $pgeq frac12$ with a statistictial significance of $alpha$
– callculus
Aug 2 at 18:26
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
Sorry, but that doesn't convince. The point is: What we do in your sum above is to calculate $P(text$H_0$ is truelandtext$H_0$ rejected)$ (which is the type 1 or $alpha$ error) without really taking the condition $text$H_0$ is true$ into account (by additionaly assuming $p$ not to be less than $p_0$).
– Don Fuchs
Aug 4 at 14:08
 |Â
show 3 more comments
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870163%2ftype-1-error-condition-in-one-tailed-statistical-hypothesis-test%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Jetzt musst du nur noch eine konkrete Frage zu der Ergänzung stellen. Hast du eingentlich schon mal beim Binomialtest in Wiki vorbei geschaut?
– callculus
Aug 4 at 16:00
Wieso du hier ein maximales $alpha$ suchst ist unklar. Beim Hypothesentest ist dieser von vorneherein schon fest gelegt, wie du auch bei meiner Ungleichung in der Antwort siehst.
– callculus
Aug 4 at 16:14
Ich verstehe es jetzt so: Das Signifikanzniveau (meist mit $alpha$ bezeichnet) gibt eine obere Schranke für die W., einen Fehler 1. Art zu begehen, sagen $alpha_1$. Da man aber unter Annahme von $H_0$ $p$ nicht genau kennt (man hat nur eine Ungleichung), schätzt man $alpha_1$ durch $alpha_max$ ab.
– Don Fuchs
Aug 4 at 17:46
Und aus Monotoniegründen ist nun die Summe $sum B_n,p(X=i)$ maximal für $p=p_0=frac12$ (bei festem $k$) (die W. für mind. $k$ mal Kopf steigt mit der Erfolgwahrscheinlichkeit).
– Don Fuchs
Aug 4 at 17:54