Uniform limit of continuously differentiable function
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Consider $$f_n(x)=sqrtx^2+frac1n$$ on $[-1,1]$
I know $f_n(x) rightarrow vert x vert$ pointwise on $[-1,1]$
How to prove this convergence is also uniform? That is, how to make $$Bigvert ;sqrtx^2+frac1n -vert x vert ;; Bigvert $$ as small as possible? Any hint?
real-analysis uniform-convergence
add a comment |Â
up vote
0
down vote
favorite
Consider $$f_n(x)=sqrtx^2+frac1n$$ on $[-1,1]$
I know $f_n(x) rightarrow vert x vert$ pointwise on $[-1,1]$
How to prove this convergence is also uniform? That is, how to make $$Bigvert ;sqrtx^2+frac1n -vert x vert ;; Bigvert $$ as small as possible? Any hint?
real-analysis uniform-convergence
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Consider $$f_n(x)=sqrtx^2+frac1n$$ on $[-1,1]$
I know $f_n(x) rightarrow vert x vert$ pointwise on $[-1,1]$
How to prove this convergence is also uniform? That is, how to make $$Bigvert ;sqrtx^2+frac1n -vert x vert ;; Bigvert $$ as small as possible? Any hint?
real-analysis uniform-convergence
Consider $$f_n(x)=sqrtx^2+frac1n$$ on $[-1,1]$
I know $f_n(x) rightarrow vert x vert$ pointwise on $[-1,1]$
How to prove this convergence is also uniform? That is, how to make $$Bigvert ;sqrtx^2+frac1n -vert x vert ;; Bigvert $$ as small as possible? Any hint?
real-analysis uniform-convergence
asked Jul 26 at 3:16


Learning Mathematics
469213
469213
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
For $a,b ge 0$, we see $$(a+b)^2 ge a^2 + b^2 ,,, implies ,,, a + b ge sqrta^2 + b^2.$$ This shows that $$sqrtx^2 + frac 1 n le lvert x rvert + frac 1 sqrt n.$$ It's also clear that $lvert x rvert le sqrtx^2 + frac 1 n$ and thus $$0 le sqrtx^2 + frac 1 n - lvert x rvertle frac1sqrt n$$ shows that $sqrtx^2 + frac 1 n to lvert x rvert$ uniformly for $x in mathbb R$.
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
1
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
add a comment |Â
up vote
2
down vote
Note that
$$sqrtx^2+frac1n -vert x vert =left(sqrtx^2+frac1n -vert x vertright) fracsqrtx^2+frac1n +vert x vertsqrtx^2+frac1n +vert x vert = fracx^2 + frac1n- x^2sqrtx^2+frac1n +vert x vert leqslant frac1sqrtn
$$
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
add a comment |Â
up vote
1
down vote
Note that
$$
lvert xrvert leq f_n(x) leq lvert xrvert + frac1sqrtnqquad forall xin[-1,1]tag$dagger$
$$
the second inequality e.g. by observing that, for any $x$,
$$
left(lvert xrvert + frac1sqrtn right)^2 = f_n(x)^2 + 2fraclvert xrvertsqrtn geq f_n(x)^2,.
$$
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
For $a,b ge 0$, we see $$(a+b)^2 ge a^2 + b^2 ,,, implies ,,, a + b ge sqrta^2 + b^2.$$ This shows that $$sqrtx^2 + frac 1 n le lvert x rvert + frac 1 sqrt n.$$ It's also clear that $lvert x rvert le sqrtx^2 + frac 1 n$ and thus $$0 le sqrtx^2 + frac 1 n - lvert x rvertle frac1sqrt n$$ shows that $sqrtx^2 + frac 1 n to lvert x rvert$ uniformly for $x in mathbb R$.
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
1
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
add a comment |Â
up vote
1
down vote
accepted
For $a,b ge 0$, we see $$(a+b)^2 ge a^2 + b^2 ,,, implies ,,, a + b ge sqrta^2 + b^2.$$ This shows that $$sqrtx^2 + frac 1 n le lvert x rvert + frac 1 sqrt n.$$ It's also clear that $lvert x rvert le sqrtx^2 + frac 1 n$ and thus $$0 le sqrtx^2 + frac 1 n - lvert x rvertle frac1sqrt n$$ shows that $sqrtx^2 + frac 1 n to lvert x rvert$ uniformly for $x in mathbb R$.
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
1
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
For $a,b ge 0$, we see $$(a+b)^2 ge a^2 + b^2 ,,, implies ,,, a + b ge sqrta^2 + b^2.$$ This shows that $$sqrtx^2 + frac 1 n le lvert x rvert + frac 1 sqrt n.$$ It's also clear that $lvert x rvert le sqrtx^2 + frac 1 n$ and thus $$0 le sqrtx^2 + frac 1 n - lvert x rvertle frac1sqrt n$$ shows that $sqrtx^2 + frac 1 n to lvert x rvert$ uniformly for $x in mathbb R$.
For $a,b ge 0$, we see $$(a+b)^2 ge a^2 + b^2 ,,, implies ,,, a + b ge sqrta^2 + b^2.$$ This shows that $$sqrtx^2 + frac 1 n le lvert x rvert + frac 1 sqrt n.$$ It's also clear that $lvert x rvert le sqrtx^2 + frac 1 n$ and thus $$0 le sqrtx^2 + frac 1 n - lvert x rvertle frac1sqrt n$$ shows that $sqrtx^2 + frac 1 n to lvert x rvert$ uniformly for $x in mathbb R$.
answered Jul 26 at 3:22
User8128
10.2k1522
10.2k1522
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
1
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
add a comment |Â
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
1
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
you mean $M_n=sup ; vert f_n - f vert = frac1sqrtn rightarrow 0$, so the convergence is uniform ?
– Learning Mathematics
Jul 26 at 3:29
1
1
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
Exactly. Rather, I only showed that $$sup lvert f_n - f rvert le frac1sqrt n,$$ but of course, the bound is achieved at $x = 0$.
– User8128
Jul 26 at 3:41
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
ok Thank you sir!
– Learning Mathematics
Jul 26 at 3:46
add a comment |Â
up vote
2
down vote
Note that
$$sqrtx^2+frac1n -vert x vert =left(sqrtx^2+frac1n -vert x vertright) fracsqrtx^2+frac1n +vert x vertsqrtx^2+frac1n +vert x vert = fracx^2 + frac1n- x^2sqrtx^2+frac1n +vert x vert leqslant frac1sqrtn
$$
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
add a comment |Â
up vote
2
down vote
Note that
$$sqrtx^2+frac1n -vert x vert =left(sqrtx^2+frac1n -vert x vertright) fracsqrtx^2+frac1n +vert x vertsqrtx^2+frac1n +vert x vert = fracx^2 + frac1n- x^2sqrtx^2+frac1n +vert x vert leqslant frac1sqrtn
$$
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Note that
$$sqrtx^2+frac1n -vert x vert =left(sqrtx^2+frac1n -vert x vertright) fracsqrtx^2+frac1n +vert x vertsqrtx^2+frac1n +vert x vert = fracx^2 + frac1n- x^2sqrtx^2+frac1n +vert x vert leqslant frac1sqrtn
$$
Note that
$$sqrtx^2+frac1n -vert x vert =left(sqrtx^2+frac1n -vert x vertright) fracsqrtx^2+frac1n +vert x vertsqrtx^2+frac1n +vert x vert = fracx^2 + frac1n- x^2sqrtx^2+frac1n +vert x vert leqslant frac1sqrtn
$$
answered Jul 26 at 3:25
RRL
43.5k42260
43.5k42260
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
add a comment |Â
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
Thank you for sharing your thought sir!
– Learning Mathematics
Jul 26 at 3:34
add a comment |Â
up vote
1
down vote
Note that
$$
lvert xrvert leq f_n(x) leq lvert xrvert + frac1sqrtnqquad forall xin[-1,1]tag$dagger$
$$
the second inequality e.g. by observing that, for any $x$,
$$
left(lvert xrvert + frac1sqrtn right)^2 = f_n(x)^2 + 2fraclvert xrvertsqrtn geq f_n(x)^2,.
$$
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
add a comment |Â
up vote
1
down vote
Note that
$$
lvert xrvert leq f_n(x) leq lvert xrvert + frac1sqrtnqquad forall xin[-1,1]tag$dagger$
$$
the second inequality e.g. by observing that, for any $x$,
$$
left(lvert xrvert + frac1sqrtn right)^2 = f_n(x)^2 + 2fraclvert xrvertsqrtn geq f_n(x)^2,.
$$
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Note that
$$
lvert xrvert leq f_n(x) leq lvert xrvert + frac1sqrtnqquad forall xin[-1,1]tag$dagger$
$$
the second inequality e.g. by observing that, for any $x$,
$$
left(lvert xrvert + frac1sqrtn right)^2 = f_n(x)^2 + 2fraclvert xrvertsqrtn geq f_n(x)^2,.
$$
Note that
$$
lvert xrvert leq f_n(x) leq lvert xrvert + frac1sqrtnqquad forall xin[-1,1]tag$dagger$
$$
the second inequality e.g. by observing that, for any $x$,
$$
left(lvert xrvert + frac1sqrtn right)^2 = f_n(x)^2 + 2fraclvert xrvertsqrtn geq f_n(x)^2,.
$$
answered Jul 26 at 3:22


Clement C.
47k33682
47k33682
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
add a comment |Â
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
This one helps too! thanks!
– Learning Mathematics
Jul 26 at 3:32
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863045%2funiform-limit-of-continuously-differentiable-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password