What does the Squared 2-Parameter Exponential Cumulative Density Function Measure?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )




Question:

what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?




Any information about that distribution would be appreciated.







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )




    Question:

    what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?




    Any information about that distribution would be appreciated.







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )




      Question:

      what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?




      Any information about that distribution would be appreciated.







      share|cite|improve this question













      The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )




      Question:

      what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?




      Any information about that distribution would be appreciated.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 27 at 19:49
























      asked Jul 27 at 19:17









      Manfred Weis

      1417




      1417




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          $1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.



          Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$



          Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864706%2fwhat-does-the-squared-2-parameter-exponential-cumulative-density-function-measur%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote













            $1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.



            Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$



            Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$






            share|cite|improve this answer

























              up vote
              1
              down vote













              $1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.



              Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$



              Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$






              share|cite|improve this answer























                up vote
                1
                down vote










                up vote
                1
                down vote









                $1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.



                Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$



                Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$






                share|cite|improve this answer













                $1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.



                Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$



                Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 27 at 21:27









                Henry

                92.9k469147




                92.9k469147






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864706%2fwhat-does-the-squared-2-parameter-exponential-cumulative-density-function-measur%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?