What does the Squared 2-Parameter Exponential Cumulative Density Function Measure?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )
Question:
what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?
Any information about that distribution would be appreciated.
probability-distributions
add a comment |Â
up vote
0
down vote
favorite
The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )
Question:
what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?
Any information about that distribution would be appreciated.
probability-distributions
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )
Question:
what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?
Any information about that distribution would be appreciated.
probability-distributions
The 2-parameter exponential cumulative density function is defined as $1-e^lambda (x-gamma)quad$ (see e.g. this page )
Question:
what does $quad1-left(1-e^lambda (x-gamma)right)^2quad$ measure?
Any information about that distribution would be appreciated.
probability-distributions
edited Jul 27 at 19:49
asked Jul 27 at 19:17
Manfred Weis
1417
1417
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
$1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.
Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$
Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
$1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.
Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$
Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$
add a comment |Â
up vote
1
down vote
$1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.
Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$
Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.
Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$
Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$
$1-e^lambda (x-gamma)$ is $mathbb P(Xle x)$ for a two parameter exponentially distributed random variable with rate $lambda$ and minimum possible value $gamma$ where $xge gamma$.
Suppose you have two independent random variables $X_1$ and $X_2$ with this distribution. Then $left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(X_1le x, X_2le x) = mathbb P(max(X_1, X_2)le x)$. So $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x)$
Alternatively, if $X_1$ and $X_2$ have random variables with independent one parameter exponential distributions and rates of $lambda$, then $1-left(1-e^lambda (x-gamma)right)^2$ is $mathbb P(max(X_1, X_2)gt x mid min(X_1, X_2)gt gamma)$ so long as $0 le gamma le x$
answered Jul 27 at 21:27
Henry
92.9k469147
92.9k469147
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2864706%2fwhat-does-the-squared-2-parameter-exponential-cumulative-density-function-measur%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password