Why does $|e^ix|^2 = 1$?
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
Why does $|e^ix|^2 = 1$?
The book said $e^ix = cos x + isin x$, and square it, then $|e^ix|^2 = cos^2x + sin^2x = 1$.
But, when I calculated it, $ |e^ix|^2 = left|cos x + isin xright|^2 = cos^2x - sin^2x + 2isin xcos x$.
I can't make it to be equal $1.$ How can I do it?
complex-numbers absolute-value
add a comment |Â
up vote
5
down vote
favorite
Why does $|e^ix|^2 = 1$?
The book said $e^ix = cos x + isin x$, and square it, then $|e^ix|^2 = cos^2x + sin^2x = 1$.
But, when I calculated it, $ |e^ix|^2 = left|cos x + isin xright|^2 = cos^2x - sin^2x + 2isin xcos x$.
I can't make it to be equal $1.$ How can I do it?
complex-numbers absolute-value
7
$|z|^2 = zbar z$, not $z^2$.
– Ted Shifrin
Aug 3 at 4:01
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Why does $|e^ix|^2 = 1$?
The book said $e^ix = cos x + isin x$, and square it, then $|e^ix|^2 = cos^2x + sin^2x = 1$.
But, when I calculated it, $ |e^ix|^2 = left|cos x + isin xright|^2 = cos^2x - sin^2x + 2isin xcos x$.
I can't make it to be equal $1.$ How can I do it?
complex-numbers absolute-value
Why does $|e^ix|^2 = 1$?
The book said $e^ix = cos x + isin x$, and square it, then $|e^ix|^2 = cos^2x + sin^2x = 1$.
But, when I calculated it, $ |e^ix|^2 = left|cos x + isin xright|^2 = cos^2x - sin^2x + 2isin xcos x$.
I can't make it to be equal $1.$ How can I do it?
complex-numbers absolute-value
edited Aug 3 at 4:14
Math Lover
12.2k21132
12.2k21132
asked Aug 3 at 3:59
uninopkn
353
353
7
$|z|^2 = zbar z$, not $z^2$.
– Ted Shifrin
Aug 3 at 4:01
add a comment |Â
7
$|z|^2 = zbar z$, not $z^2$.
– Ted Shifrin
Aug 3 at 4:01
7
7
$|z|^2 = zbar z$, not $z^2$.
– Ted Shifrin
Aug 3 at 4:01
$|z|^2 = zbar z$, not $z^2$.
– Ted Shifrin
Aug 3 at 4:01
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
4
down vote
accepted
If $a,b$ are real then $displaystyle left| a+bi right| = sqrta^2+b^2,, = sqrt(a+bi)(a-bi),.$
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
add a comment |Â
up vote
4
down vote
If $x in mathbbR$,
$$cos^2x - sin^2 x= cos(2x)$$
$$2 sin x cos x =sin(2x)$$
$$|(cos x + i sin x)^2|=cos^2(2x)+sin^2(2x)=1$$
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
add a comment |Â
up vote
1
down vote
you can first apply the modulus $$|e^ix|=sqrtcos^2 x + sin^2 x$$ then square it whole you will get $$|e^ix|^2=cos^2 x + sin^2 x=1$$
add a comment |Â
up vote
1
down vote
$|z|^2=zbarz$
But the complex conjugate of $e^xi$ is $e^-xi$.
$|e^xi|^2=e^xie^-xi=1$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
If $a,b$ are real then $displaystyle left| a+bi right| = sqrta^2+b^2,, = sqrt(a+bi)(a-bi),.$
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
add a comment |Â
up vote
4
down vote
accepted
If $a,b$ are real then $displaystyle left| a+bi right| = sqrta^2+b^2,, = sqrt(a+bi)(a-bi),.$
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
If $a,b$ are real then $displaystyle left| a+bi right| = sqrta^2+b^2,, = sqrt(a+bi)(a-bi),.$
If $a,b$ are real then $displaystyle left| a+bi right| = sqrta^2+b^2,, = sqrt(a+bi)(a-bi),.$
answered Aug 3 at 4:05
Michael Hardy
204k23185460
204k23185460
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
add a comment |Â
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
Thanks.. I missed some point
– uninopkn
Aug 3 at 5:04
add a comment |Â
up vote
4
down vote
If $x in mathbbR$,
$$cos^2x - sin^2 x= cos(2x)$$
$$2 sin x cos x =sin(2x)$$
$$|(cos x + i sin x)^2|=cos^2(2x)+sin^2(2x)=1$$
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
add a comment |Â
up vote
4
down vote
If $x in mathbbR$,
$$cos^2x - sin^2 x= cos(2x)$$
$$2 sin x cos x =sin(2x)$$
$$|(cos x + i sin x)^2|=cos^2(2x)+sin^2(2x)=1$$
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
add a comment |Â
up vote
4
down vote
up vote
4
down vote
If $x in mathbbR$,
$$cos^2x - sin^2 x= cos(2x)$$
$$2 sin x cos x =sin(2x)$$
$$|(cos x + i sin x)^2|=cos^2(2x)+sin^2(2x)=1$$
If $x in mathbbR$,
$$cos^2x - sin^2 x= cos(2x)$$
$$2 sin x cos x =sin(2x)$$
$$|(cos x + i sin x)^2|=cos^2(2x)+sin^2(2x)=1$$
answered Aug 3 at 4:02


Siong Thye Goh
76.6k134794
76.6k134794
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
add a comment |Â
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
up to the point .. +1
– Ahmad Bazzi
Aug 3 at 4:12
add a comment |Â
up vote
1
down vote
you can first apply the modulus $$|e^ix|=sqrtcos^2 x + sin^2 x$$ then square it whole you will get $$|e^ix|^2=cos^2 x + sin^2 x=1$$
add a comment |Â
up vote
1
down vote
you can first apply the modulus $$|e^ix|=sqrtcos^2 x + sin^2 x$$ then square it whole you will get $$|e^ix|^2=cos^2 x + sin^2 x=1$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
you can first apply the modulus $$|e^ix|=sqrtcos^2 x + sin^2 x$$ then square it whole you will get $$|e^ix|^2=cos^2 x + sin^2 x=1$$
you can first apply the modulus $$|e^ix|=sqrtcos^2 x + sin^2 x$$ then square it whole you will get $$|e^ix|^2=cos^2 x + sin^2 x=1$$
answered Aug 3 at 4:08


Nebo Alex
1,079824
1,079824
add a comment |Â
add a comment |Â
up vote
1
down vote
$|z|^2=zbarz$
But the complex conjugate of $e^xi$ is $e^-xi$.
$|e^xi|^2=e^xie^-xi=1$
add a comment |Â
up vote
1
down vote
$|z|^2=zbarz$
But the complex conjugate of $e^xi$ is $e^-xi$.
$|e^xi|^2=e^xie^-xi=1$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$|z|^2=zbarz$
But the complex conjugate of $e^xi$ is $e^-xi$.
$|e^xi|^2=e^xie^-xi=1$
$|z|^2=zbarz$
But the complex conjugate of $e^xi$ is $e^-xi$.
$|e^xi|^2=e^xie^-xi=1$
answered Aug 3 at 5:21


Mason
1,1271223
1,1271223
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870729%2fwhy-does-eix2-1%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
7
$|z|^2 = zbar z$, not $z^2$.
– Ted Shifrin
Aug 3 at 4:01