Boolean Algebra: Where did I go wrong with the simplification

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Sorry, I don't know how to use the MathJax syntax. I am representing a not bar with



Formatted in (step used to solve : what I equated it to using that step)



Start: $Acdot overlineBcdot C+Ccdot Acdot B$



Demorgan: A•($overlineB$+$overlineC$)•($overlineC$+$overlineA$)•B



Distribution: A•($overlineC$+$overlineA$)•B•$overlineB$+A•($overlineC$+$overlineA$)•B•$overlineC$



A•$overlineA$=0 : 0+A•($overlineC$+$overlineA$)•B•$overlineC$



A+0=A : A•($overlineC$+$overlineA$)•B•$overlineC$



Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



A+A=A : A•B•$overlineC$•$overlineA$



A•$overlineA$=0 : 0



Final: 0



Sites are giving me this as the correct simplification: A•B•C
https://www.dcode.fr/boolean-expressions-calculator







share|cite|improve this question





















  • Here a MathJax Tutorial
    – saulspatz
    Aug 2 at 16:17










  • "A+A=A : A•B•C•A." But you don't have "A•B•C•A+A•B•C•A" you have "A•B•C•C+A•B•C•A " and A•B•C•C$ne$A•B•C•A.
    – fleablood
    Aug 2 at 16:23










  • Thank you. I don't know why I thought that.
    – John Smith
    Aug 2 at 16:25










  • I edited and provided the proper Mathjax formula for your first expression ... can you edit and do the rest?
    – Bram28
    Aug 2 at 16:38










  • "I don't know why I thought that" A quasi-dyslexic proof reading over-sight. Frustratingly easy to make.
    – fleablood
    Aug 2 at 16:47














up vote
0
down vote

favorite












Sorry, I don't know how to use the MathJax syntax. I am representing a not bar with



Formatted in (step used to solve : what I equated it to using that step)



Start: $Acdot overlineBcdot C+Ccdot Acdot B$



Demorgan: A•($overlineB$+$overlineC$)•($overlineC$+$overlineA$)•B



Distribution: A•($overlineC$+$overlineA$)•B•$overlineB$+A•($overlineC$+$overlineA$)•B•$overlineC$



A•$overlineA$=0 : 0+A•($overlineC$+$overlineA$)•B•$overlineC$



A+0=A : A•($overlineC$+$overlineA$)•B•$overlineC$



Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



A+A=A : A•B•$overlineC$•$overlineA$



A•$overlineA$=0 : 0



Final: 0



Sites are giving me this as the correct simplification: A•B•C
https://www.dcode.fr/boolean-expressions-calculator







share|cite|improve this question





















  • Here a MathJax Tutorial
    – saulspatz
    Aug 2 at 16:17










  • "A+A=A : A•B•C•A." But you don't have "A•B•C•A+A•B•C•A" you have "A•B•C•C+A•B•C•A " and A•B•C•C$ne$A•B•C•A.
    – fleablood
    Aug 2 at 16:23










  • Thank you. I don't know why I thought that.
    – John Smith
    Aug 2 at 16:25










  • I edited and provided the proper Mathjax formula for your first expression ... can you edit and do the rest?
    – Bram28
    Aug 2 at 16:38










  • "I don't know why I thought that" A quasi-dyslexic proof reading over-sight. Frustratingly easy to make.
    – fleablood
    Aug 2 at 16:47












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Sorry, I don't know how to use the MathJax syntax. I am representing a not bar with



Formatted in (step used to solve : what I equated it to using that step)



Start: $Acdot overlineBcdot C+Ccdot Acdot B$



Demorgan: A•($overlineB$+$overlineC$)•($overlineC$+$overlineA$)•B



Distribution: A•($overlineC$+$overlineA$)•B•$overlineB$+A•($overlineC$+$overlineA$)•B•$overlineC$



A•$overlineA$=0 : 0+A•($overlineC$+$overlineA$)•B•$overlineC$



A+0=A : A•($overlineC$+$overlineA$)•B•$overlineC$



Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



A+A=A : A•B•$overlineC$•$overlineA$



A•$overlineA$=0 : 0



Final: 0



Sites are giving me this as the correct simplification: A•B•C
https://www.dcode.fr/boolean-expressions-calculator







share|cite|improve this question













Sorry, I don't know how to use the MathJax syntax. I am representing a not bar with



Formatted in (step used to solve : what I equated it to using that step)



Start: $Acdot overlineBcdot C+Ccdot Acdot B$



Demorgan: A•($overlineB$+$overlineC$)•($overlineC$+$overlineA$)•B



Distribution: A•($overlineC$+$overlineA$)•B•$overlineB$+A•($overlineC$+$overlineA$)•B•$overlineC$



A•$overlineA$=0 : 0+A•($overlineC$+$overlineA$)•B•$overlineC$



A+0=A : A•($overlineC$+$overlineA$)•B•$overlineC$



Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



A+A=A : A•B•$overlineC$•$overlineA$



A•$overlineA$=0 : 0



Final: 0



Sites are giving me this as the correct simplification: A•B•C
https://www.dcode.fr/boolean-expressions-calculator









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 2 at 16:37









Bram28

54.5k33880




54.5k33880









asked Aug 2 at 16:16









John Smith

11




11











  • Here a MathJax Tutorial
    – saulspatz
    Aug 2 at 16:17










  • "A+A=A : A•B•C•A." But you don't have "A•B•C•A+A•B•C•A" you have "A•B•C•C+A•B•C•A " and A•B•C•C$ne$A•B•C•A.
    – fleablood
    Aug 2 at 16:23










  • Thank you. I don't know why I thought that.
    – John Smith
    Aug 2 at 16:25










  • I edited and provided the proper Mathjax formula for your first expression ... can you edit and do the rest?
    – Bram28
    Aug 2 at 16:38










  • "I don't know why I thought that" A quasi-dyslexic proof reading over-sight. Frustratingly easy to make.
    – fleablood
    Aug 2 at 16:47
















  • Here a MathJax Tutorial
    – saulspatz
    Aug 2 at 16:17










  • "A+A=A : A•B•C•A." But you don't have "A•B•C•A+A•B•C•A" you have "A•B•C•C+A•B•C•A " and A•B•C•C$ne$A•B•C•A.
    – fleablood
    Aug 2 at 16:23










  • Thank you. I don't know why I thought that.
    – John Smith
    Aug 2 at 16:25










  • I edited and provided the proper Mathjax formula for your first expression ... can you edit and do the rest?
    – Bram28
    Aug 2 at 16:38










  • "I don't know why I thought that" A quasi-dyslexic proof reading over-sight. Frustratingly easy to make.
    – fleablood
    Aug 2 at 16:47















Here a MathJax Tutorial
– saulspatz
Aug 2 at 16:17




Here a MathJax Tutorial
– saulspatz
Aug 2 at 16:17












"A+A=A : A•B•C•A." But you don't have "A•B•C•A+A•B•C•A" you have "A•B•C•C+A•B•C•A " and A•B•C•C$ne$A•B•C•A.
– fleablood
Aug 2 at 16:23




"A+A=A : A•B•C•A." But you don't have "A•B•C•A+A•B•C•A" you have "A•B•C•C+A•B•C•A " and A•B•C•C$ne$A•B•C•A.
– fleablood
Aug 2 at 16:23












Thank you. I don't know why I thought that.
– John Smith
Aug 2 at 16:25




Thank you. I don't know why I thought that.
– John Smith
Aug 2 at 16:25












I edited and provided the proper Mathjax formula for your first expression ... can you edit and do the rest?
– Bram28
Aug 2 at 16:38




I edited and provided the proper Mathjax formula for your first expression ... can you edit and do the rest?
– Bram28
Aug 2 at 16:38












"I don't know why I thought that" A quasi-dyslexic proof reading over-sight. Frustratingly easy to make.
– fleablood
Aug 2 at 16:47




"I don't know why I thought that" A quasi-dyslexic proof reading over-sight. Frustratingly easy to make.
– fleablood
Aug 2 at 16:47










3 Answers
3






active

oldest

votes

















up vote
0
down vote













Here is your mistake:




Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



A+A=A : A•B•$overlineC$•$overlineA$




No. The two terms are different. In fact, the second term contains $Acdot barA$, and thus works out to $0$, but the first term simplifies to just $Acdot B cdot barC$ ... as that website correctly finds.






share|cite|improve this answer




























    up vote
    0
    down vote













    You have line $6$



    6) $A•B•overlineC•overlineC+A•B•overlineC•overlineA$



    Then one line 7: you claim as $A+ A = A$ that $A•B•overlineC•overlineC+A•B•overlineC•overlineA= A•B•overlineC•overlineA$



    But $A•B•overlineC•overlineC$ and $A•B•overlineC•overlineA$ are not the same.



    Instead use $Acdot A = A$ to get that $overlineC•overlineC = overlineC$ to get:



    7) $A•B•overlineC+A•B•overlineC•overlineA$



    Then distribute:



    8) $A•B•overlineC(1 + overline A)$



    9) $1 + A = 1 : A•B•overlineCcdot 1$



    10) $1cdot A = A: Acdot Bcdot overlineC$.



    ...or....



    8) $Aoverline A = 0: Acdot Bcdot overlineC + 0$



    9) $A + 0 = A: Acdot Bcdot overlineC$






    share|cite|improve this answer




























      up vote
      0
      down vote













      Analogous with sets:



      • $Acap((Bcap C)cup(Ccap A))^complementcap B$

      • $Acap((Bcap C)^complementcap(Ccap A)^complement)cap B$

      • $Acap((B^complementcup C^complement)cap(C^complementcup A^complement))cap B$

      • $Acap((B^complementcap C^complement)cup(B^complementcap A^complement)cup (C^complementcap C^complement)cup(C^complementcap A^complement))cap B$

      • $(Acap B^complementcap C^complementcap B)cup(Acap B^complementcap A^complementcap B)cup(Acap C^complementcap C^complementcap B)cup(Acap C^complementcap A^complementcap B)$

      • $varnothingcupvarnothingcup(Acap C^complementcap C^complementcap B)cupvarnothing$

      • $Acap C^complementcap B$





      share|cite|improve this answer





















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870244%2fboolean-algebra-where-did-i-go-wrong-with-the-simplification%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        0
        down vote













        Here is your mistake:




        Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



        A+A=A : A•B•$overlineC$•$overlineA$




        No. The two terms are different. In fact, the second term contains $Acdot barA$, and thus works out to $0$, but the first term simplifies to just $Acdot B cdot barC$ ... as that website correctly finds.






        share|cite|improve this answer

























          up vote
          0
          down vote













          Here is your mistake:




          Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



          A+A=A : A•B•$overlineC$•$overlineA$




          No. The two terms are different. In fact, the second term contains $Acdot barA$, and thus works out to $0$, but the first term simplifies to just $Acdot B cdot barC$ ... as that website correctly finds.






          share|cite|improve this answer























            up vote
            0
            down vote










            up vote
            0
            down vote









            Here is your mistake:




            Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



            A+A=A : A•B•$overlineC$•$overlineA$




            No. The two terms are different. In fact, the second term contains $Acdot barA$, and thus works out to $0$, but the first term simplifies to just $Acdot B cdot barC$ ... as that website correctly finds.






            share|cite|improve this answer













            Here is your mistake:




            Distribution: A•B•$overlineC$•$overlineC$+A•B•$overlineC$•$overlineA$



            A+A=A : A•B•$overlineC$•$overlineA$




            No. The two terms are different. In fact, the second term contains $Acdot barA$, and thus works out to $0$, but the first term simplifies to just $Acdot B cdot barC$ ... as that website correctly finds.







            share|cite|improve this answer













            share|cite|improve this answer



            share|cite|improve this answer











            answered Aug 2 at 16:35









            Bram28

            54.5k33880




            54.5k33880




















                up vote
                0
                down vote













                You have line $6$



                6) $A•B•overlineC•overlineC+A•B•overlineC•overlineA$



                Then one line 7: you claim as $A+ A = A$ that $A•B•overlineC•overlineC+A•B•overlineC•overlineA= A•B•overlineC•overlineA$



                But $A•B•overlineC•overlineC$ and $A•B•overlineC•overlineA$ are not the same.



                Instead use $Acdot A = A$ to get that $overlineC•overlineC = overlineC$ to get:



                7) $A•B•overlineC+A•B•overlineC•overlineA$



                Then distribute:



                8) $A•B•overlineC(1 + overline A)$



                9) $1 + A = 1 : A•B•overlineCcdot 1$



                10) $1cdot A = A: Acdot Bcdot overlineC$.



                ...or....



                8) $Aoverline A = 0: Acdot Bcdot overlineC + 0$



                9) $A + 0 = A: Acdot Bcdot overlineC$






                share|cite|improve this answer

























                  up vote
                  0
                  down vote













                  You have line $6$



                  6) $A•B•overlineC•overlineC+A•B•overlineC•overlineA$



                  Then one line 7: you claim as $A+ A = A$ that $A•B•overlineC•overlineC+A•B•overlineC•overlineA= A•B•overlineC•overlineA$



                  But $A•B•overlineC•overlineC$ and $A•B•overlineC•overlineA$ are not the same.



                  Instead use $Acdot A = A$ to get that $overlineC•overlineC = overlineC$ to get:



                  7) $A•B•overlineC+A•B•overlineC•overlineA$



                  Then distribute:



                  8) $A•B•overlineC(1 + overline A)$



                  9) $1 + A = 1 : A•B•overlineCcdot 1$



                  10) $1cdot A = A: Acdot Bcdot overlineC$.



                  ...or....



                  8) $Aoverline A = 0: Acdot Bcdot overlineC + 0$



                  9) $A + 0 = A: Acdot Bcdot overlineC$






                  share|cite|improve this answer























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    You have line $6$



                    6) $A•B•overlineC•overlineC+A•B•overlineC•overlineA$



                    Then one line 7: you claim as $A+ A = A$ that $A•B•overlineC•overlineC+A•B•overlineC•overlineA= A•B•overlineC•overlineA$



                    But $A•B•overlineC•overlineC$ and $A•B•overlineC•overlineA$ are not the same.



                    Instead use $Acdot A = A$ to get that $overlineC•overlineC = overlineC$ to get:



                    7) $A•B•overlineC+A•B•overlineC•overlineA$



                    Then distribute:



                    8) $A•B•overlineC(1 + overline A)$



                    9) $1 + A = 1 : A•B•overlineCcdot 1$



                    10) $1cdot A = A: Acdot Bcdot overlineC$.



                    ...or....



                    8) $Aoverline A = 0: Acdot Bcdot overlineC + 0$



                    9) $A + 0 = A: Acdot Bcdot overlineC$






                    share|cite|improve this answer













                    You have line $6$



                    6) $A•B•overlineC•overlineC+A•B•overlineC•overlineA$



                    Then one line 7: you claim as $A+ A = A$ that $A•B•overlineC•overlineC+A•B•overlineC•overlineA= A•B•overlineC•overlineA$



                    But $A•B•overlineC•overlineC$ and $A•B•overlineC•overlineA$ are not the same.



                    Instead use $Acdot A = A$ to get that $overlineC•overlineC = overlineC$ to get:



                    7) $A•B•overlineC+A•B•overlineC•overlineA$



                    Then distribute:



                    8) $A•B•overlineC(1 + overline A)$



                    9) $1 + A = 1 : A•B•overlineCcdot 1$



                    10) $1cdot A = A: Acdot Bcdot overlineC$.



                    ...or....



                    8) $Aoverline A = 0: Acdot Bcdot overlineC + 0$



                    9) $A + 0 = A: Acdot Bcdot overlineC$







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Aug 2 at 16:45









                    fleablood

                    60.1k22575




                    60.1k22575




















                        up vote
                        0
                        down vote













                        Analogous with sets:



                        • $Acap((Bcap C)cup(Ccap A))^complementcap B$

                        • $Acap((Bcap C)^complementcap(Ccap A)^complement)cap B$

                        • $Acap((B^complementcup C^complement)cap(C^complementcup A^complement))cap B$

                        • $Acap((B^complementcap C^complement)cup(B^complementcap A^complement)cup (C^complementcap C^complement)cup(C^complementcap A^complement))cap B$

                        • $(Acap B^complementcap C^complementcap B)cup(Acap B^complementcap A^complementcap B)cup(Acap C^complementcap C^complementcap B)cup(Acap C^complementcap A^complementcap B)$

                        • $varnothingcupvarnothingcup(Acap C^complementcap C^complementcap B)cupvarnothing$

                        • $Acap C^complementcap B$





                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          Analogous with sets:



                          • $Acap((Bcap C)cup(Ccap A))^complementcap B$

                          • $Acap((Bcap C)^complementcap(Ccap A)^complement)cap B$

                          • $Acap((B^complementcup C^complement)cap(C^complementcup A^complement))cap B$

                          • $Acap((B^complementcap C^complement)cup(B^complementcap A^complement)cup (C^complementcap C^complement)cup(C^complementcap A^complement))cap B$

                          • $(Acap B^complementcap C^complementcap B)cup(Acap B^complementcap A^complementcap B)cup(Acap C^complementcap C^complementcap B)cup(Acap C^complementcap A^complementcap B)$

                          • $varnothingcupvarnothingcup(Acap C^complementcap C^complementcap B)cupvarnothing$

                          • $Acap C^complementcap B$





                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            Analogous with sets:



                            • $Acap((Bcap C)cup(Ccap A))^complementcap B$

                            • $Acap((Bcap C)^complementcap(Ccap A)^complement)cap B$

                            • $Acap((B^complementcup C^complement)cap(C^complementcup A^complement))cap B$

                            • $Acap((B^complementcap C^complement)cup(B^complementcap A^complement)cup (C^complementcap C^complement)cup(C^complementcap A^complement))cap B$

                            • $(Acap B^complementcap C^complementcap B)cup(Acap B^complementcap A^complementcap B)cup(Acap C^complementcap C^complementcap B)cup(Acap C^complementcap A^complementcap B)$

                            • $varnothingcupvarnothingcup(Acap C^complementcap C^complementcap B)cupvarnothing$

                            • $Acap C^complementcap B$





                            share|cite|improve this answer













                            Analogous with sets:



                            • $Acap((Bcap C)cup(Ccap A))^complementcap B$

                            • $Acap((Bcap C)^complementcap(Ccap A)^complement)cap B$

                            • $Acap((B^complementcup C^complement)cap(C^complementcup A^complement))cap B$

                            • $Acap((B^complementcap C^complement)cup(B^complementcap A^complement)cup (C^complementcap C^complement)cup(C^complementcap A^complement))cap B$

                            • $(Acap B^complementcap C^complementcap B)cup(Acap B^complementcap A^complementcap B)cup(Acap C^complementcap C^complementcap B)cup(Acap C^complementcap A^complementcap B)$

                            • $varnothingcupvarnothingcup(Acap C^complementcap C^complementcap B)cupvarnothing$

                            • $Acap C^complementcap B$






                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Aug 2 at 17:11









                            drhab

                            85.8k540118




                            85.8k540118






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870244%2fboolean-algebra-where-did-i-go-wrong-with-the-simplification%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                Comments

                                Popular posts from this blog

                                What is the equation of a 3D cone with generalised tilt?

                                Color the edges and diagonals of a regular polygon

                                Relationship between determinant of matrix and determinant of adjoint?