Calculate the derivative of $f(x)=int_x^x^2tan(x+y),dy$ on the open interval $(0,fracpi4)$.
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
This appears to be a chain rule question, but I'm struggling with the setup. My attempt is as follows:
Let $F:mathbbR^2rightarrowmathbbR$,
$F(u,v)=int_u^u^2$tan$(v+y)dy$,
$u:mathbbRrightarrowmathbbR^2$,
and $u(x)=(u(x),v(x))=(x,x)$.
Then writing $f(x)=(Fcirc u)(x)$ allows for use of the chain rule:
$D(Fcirc u)(x)=DF(u(x),v(x))Du(x)=left[fracpartial Fpartial umbox fracpartial Fpartial vright]beginbmatrixu'(x)\v'(x)endbmatrix=fracpartial Fpartial u(u(x))u'(x)+fracpartial Fpartial v(u(x))v'(x)$
Then by the Fundamental Theorem of Calculus,
$fracpartial Fpartial u=fracpartialpartial uint_u^u^2tan(v+y)dy=mboxtan(v+u)=mboxtan(x+x)=mboxtan(2x)$
And similarly,
$fracpartial Fpartial v=fracpartialpartial vint_u^u^2mboxtan(v+y)dy=int_u^u^2fracpartialpartial vmboxtan(v+y)dy=int_x^x^2fracpartialpartial xmboxtan(x+y)dy=int_x^x^2mboxsec^2(x+y)dy$
However at this point, I'm relatively convinced I'm making a major mistake, either with my entire substitution or with the way I'm handling the boundaries. Any advice is much appreciated.
real-analysis multivariable-calculus proof-verification
add a comment |Â
up vote
2
down vote
favorite
This appears to be a chain rule question, but I'm struggling with the setup. My attempt is as follows:
Let $F:mathbbR^2rightarrowmathbbR$,
$F(u,v)=int_u^u^2$tan$(v+y)dy$,
$u:mathbbRrightarrowmathbbR^2$,
and $u(x)=(u(x),v(x))=(x,x)$.
Then writing $f(x)=(Fcirc u)(x)$ allows for use of the chain rule:
$D(Fcirc u)(x)=DF(u(x),v(x))Du(x)=left[fracpartial Fpartial umbox fracpartial Fpartial vright]beginbmatrixu'(x)\v'(x)endbmatrix=fracpartial Fpartial u(u(x))u'(x)+fracpartial Fpartial v(u(x))v'(x)$
Then by the Fundamental Theorem of Calculus,
$fracpartial Fpartial u=fracpartialpartial uint_u^u^2tan(v+y)dy=mboxtan(v+u)=mboxtan(x+x)=mboxtan(2x)$
And similarly,
$fracpartial Fpartial v=fracpartialpartial vint_u^u^2mboxtan(v+y)dy=int_u^u^2fracpartialpartial vmboxtan(v+y)dy=int_x^x^2fracpartialpartial xmboxtan(x+y)dy=int_x^x^2mboxsec^2(x+y)dy$
However at this point, I'm relatively convinced I'm making a major mistake, either with my entire substitution or with the way I'm handling the boundaries. Any advice is much appreciated.
real-analysis multivariable-calculus proof-verification
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
This appears to be a chain rule question, but I'm struggling with the setup. My attempt is as follows:
Let $F:mathbbR^2rightarrowmathbbR$,
$F(u,v)=int_u^u^2$tan$(v+y)dy$,
$u:mathbbRrightarrowmathbbR^2$,
and $u(x)=(u(x),v(x))=(x,x)$.
Then writing $f(x)=(Fcirc u)(x)$ allows for use of the chain rule:
$D(Fcirc u)(x)=DF(u(x),v(x))Du(x)=left[fracpartial Fpartial umbox fracpartial Fpartial vright]beginbmatrixu'(x)\v'(x)endbmatrix=fracpartial Fpartial u(u(x))u'(x)+fracpartial Fpartial v(u(x))v'(x)$
Then by the Fundamental Theorem of Calculus,
$fracpartial Fpartial u=fracpartialpartial uint_u^u^2tan(v+y)dy=mboxtan(v+u)=mboxtan(x+x)=mboxtan(2x)$
And similarly,
$fracpartial Fpartial v=fracpartialpartial vint_u^u^2mboxtan(v+y)dy=int_u^u^2fracpartialpartial vmboxtan(v+y)dy=int_x^x^2fracpartialpartial xmboxtan(x+y)dy=int_x^x^2mboxsec^2(x+y)dy$
However at this point, I'm relatively convinced I'm making a major mistake, either with my entire substitution or with the way I'm handling the boundaries. Any advice is much appreciated.
real-analysis multivariable-calculus proof-verification
This appears to be a chain rule question, but I'm struggling with the setup. My attempt is as follows:
Let $F:mathbbR^2rightarrowmathbbR$,
$F(u,v)=int_u^u^2$tan$(v+y)dy$,
$u:mathbbRrightarrowmathbbR^2$,
and $u(x)=(u(x),v(x))=(x,x)$.
Then writing $f(x)=(Fcirc u)(x)$ allows for use of the chain rule:
$D(Fcirc u)(x)=DF(u(x),v(x))Du(x)=left[fracpartial Fpartial umbox fracpartial Fpartial vright]beginbmatrixu'(x)\v'(x)endbmatrix=fracpartial Fpartial u(u(x))u'(x)+fracpartial Fpartial v(u(x))v'(x)$
Then by the Fundamental Theorem of Calculus,
$fracpartial Fpartial u=fracpartialpartial uint_u^u^2tan(v+y)dy=mboxtan(v+u)=mboxtan(x+x)=mboxtan(2x)$
And similarly,
$fracpartial Fpartial v=fracpartialpartial vint_u^u^2mboxtan(v+y)dy=int_u^u^2fracpartialpartial vmboxtan(v+y)dy=int_x^x^2fracpartialpartial xmboxtan(x+y)dy=int_x^x^2mboxsec^2(x+y)dy$
However at this point, I'm relatively convinced I'm making a major mistake, either with my entire substitution or with the way I'm handling the boundaries. Any advice is much appreciated.
real-analysis multivariable-calculus proof-verification
edited Jul 25 at 21:17
asked Jul 25 at 21:01


Atsina
513113
513113
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
4
down vote
accepted
Using Leibniz integral rule:
beginalign
f'(x) &= 2xtan(x+x^2) - tan(2x) + int_x^x^2 fracdycos^2(x+y)\
&= 2xtan(x+x^2) - tan(2x)+ tan(x+y)Big|_x^x^2\
&= (2x+1)tan(x+x^2) - 2tan(2x)
endalign
add a comment |Â
up vote
1
down vote
Let me try:
beginalign
f'(x)
&=partial_x intlimits_x^x^2tan(x+y),dy \
&= tan(x+ x^2) (x^2)' - tan(x + x)(x)' +
intlimits_x^x^2partial_x tan(x+y),dy \
&= 2x tan(x+ x^2) - tan(2x) +
intlimits_x^x^2(1+ tan^2(x+y)) dy \
&= 2x tan(x+ x^2) - tan(2x) +
left[tan(x + y) right]_y=x^y=x^2 \
&= 2x tan(x+x^2) - tan(2x) + tan(x+x^2) - tan(2x) \
&= (2x+1) tan(x+x^2) - 2tan(2x)
endalign
add a comment |Â
up vote
1
down vote
Based upon your correction, I have revised my answer. $f(x)=int_x^x^2tan(x+y)dy=ln(cos(x+x^2))-ln(cos(2x))$. Therefore $f'(x)=(2x+1)tan(x+x^2)-2tan(2x)$.
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
add a comment |Â
up vote
0
down vote
Hint:
Let $$F(x,t)= int_0^x tan(t+y)dy$$
Then we have $$f(x)= F(x,x^2)-F(x,x)$$
NOTE THAT $partial_x F(x,t) = tan(t+x)$ and $partial_t F(x,t) = tan(x+t)- tan(t)$
can you conclude?
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Using Leibniz integral rule:
beginalign
f'(x) &= 2xtan(x+x^2) - tan(2x) + int_x^x^2 fracdycos^2(x+y)\
&= 2xtan(x+x^2) - tan(2x)+ tan(x+y)Big|_x^x^2\
&= (2x+1)tan(x+x^2) - 2tan(2x)
endalign
add a comment |Â
up vote
4
down vote
accepted
Using Leibniz integral rule:
beginalign
f'(x) &= 2xtan(x+x^2) - tan(2x) + int_x^x^2 fracdycos^2(x+y)\
&= 2xtan(x+x^2) - tan(2x)+ tan(x+y)Big|_x^x^2\
&= (2x+1)tan(x+x^2) - 2tan(2x)
endalign
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Using Leibniz integral rule:
beginalign
f'(x) &= 2xtan(x+x^2) - tan(2x) + int_x^x^2 fracdycos^2(x+y)\
&= 2xtan(x+x^2) - tan(2x)+ tan(x+y)Big|_x^x^2\
&= (2x+1)tan(x+x^2) - 2tan(2x)
endalign
Using Leibniz integral rule:
beginalign
f'(x) &= 2xtan(x+x^2) - tan(2x) + int_x^x^2 fracdycos^2(x+y)\
&= 2xtan(x+x^2) - tan(2x)+ tan(x+y)Big|_x^x^2\
&= (2x+1)tan(x+x^2) - 2tan(2x)
endalign
answered Jul 25 at 21:26
mechanodroid
22.2k52041
22.2k52041
add a comment |Â
add a comment |Â
up vote
1
down vote
Let me try:
beginalign
f'(x)
&=partial_x intlimits_x^x^2tan(x+y),dy \
&= tan(x+ x^2) (x^2)' - tan(x + x)(x)' +
intlimits_x^x^2partial_x tan(x+y),dy \
&= 2x tan(x+ x^2) - tan(2x) +
intlimits_x^x^2(1+ tan^2(x+y)) dy \
&= 2x tan(x+ x^2) - tan(2x) +
left[tan(x + y) right]_y=x^y=x^2 \
&= 2x tan(x+x^2) - tan(2x) + tan(x+x^2) - tan(2x) \
&= (2x+1) tan(x+x^2) - 2tan(2x)
endalign
add a comment |Â
up vote
1
down vote
Let me try:
beginalign
f'(x)
&=partial_x intlimits_x^x^2tan(x+y),dy \
&= tan(x+ x^2) (x^2)' - tan(x + x)(x)' +
intlimits_x^x^2partial_x tan(x+y),dy \
&= 2x tan(x+ x^2) - tan(2x) +
intlimits_x^x^2(1+ tan^2(x+y)) dy \
&= 2x tan(x+ x^2) - tan(2x) +
left[tan(x + y) right]_y=x^y=x^2 \
&= 2x tan(x+x^2) - tan(2x) + tan(x+x^2) - tan(2x) \
&= (2x+1) tan(x+x^2) - 2tan(2x)
endalign
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let me try:
beginalign
f'(x)
&=partial_x intlimits_x^x^2tan(x+y),dy \
&= tan(x+ x^2) (x^2)' - tan(x + x)(x)' +
intlimits_x^x^2partial_x tan(x+y),dy \
&= 2x tan(x+ x^2) - tan(2x) +
intlimits_x^x^2(1+ tan^2(x+y)) dy \
&= 2x tan(x+ x^2) - tan(2x) +
left[tan(x + y) right]_y=x^y=x^2 \
&= 2x tan(x+x^2) - tan(2x) + tan(x+x^2) - tan(2x) \
&= (2x+1) tan(x+x^2) - 2tan(2x)
endalign
Let me try:
beginalign
f'(x)
&=partial_x intlimits_x^x^2tan(x+y),dy \
&= tan(x+ x^2) (x^2)' - tan(x + x)(x)' +
intlimits_x^x^2partial_x tan(x+y),dy \
&= 2x tan(x+ x^2) - tan(2x) +
intlimits_x^x^2(1+ tan^2(x+y)) dy \
&= 2x tan(x+ x^2) - tan(2x) +
left[tan(x + y) right]_y=x^y=x^2 \
&= 2x tan(x+x^2) - tan(2x) + tan(x+x^2) - tan(2x) \
&= (2x+1) tan(x+x^2) - 2tan(2x)
endalign
edited Jul 25 at 21:31
answered Jul 25 at 21:23


mvw
30.2k22250
30.2k22250
add a comment |Â
add a comment |Â
up vote
1
down vote
Based upon your correction, I have revised my answer. $f(x)=int_x^x^2tan(x+y)dy=ln(cos(x+x^2))-ln(cos(2x))$. Therefore $f'(x)=(2x+1)tan(x+x^2)-2tan(2x)$.
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
add a comment |Â
up vote
1
down vote
Based upon your correction, I have revised my answer. $f(x)=int_x^x^2tan(x+y)dy=ln(cos(x+x^2))-ln(cos(2x))$. Therefore $f'(x)=(2x+1)tan(x+x^2)-2tan(2x)$.
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Based upon your correction, I have revised my answer. $f(x)=int_x^x^2tan(x+y)dy=ln(cos(x+x^2))-ln(cos(2x))$. Therefore $f'(x)=(2x+1)tan(x+x^2)-2tan(2x)$.
Based upon your correction, I have revised my answer. $f(x)=int_x^x^2tan(x+y)dy=ln(cos(x+x^2))-ln(cos(2x))$. Therefore $f'(x)=(2x+1)tan(x+x^2)-2tan(2x)$.
edited Jul 26 at 0:50
answered Jul 25 at 21:21
herb steinberg
93529
93529
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
add a comment |Â
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
The question is phrased in terms of $x$ and $y$, not $x$, $v$, and $y$. Not sure why @Holo edited my original post to appear that way, but I changed it back
– Atsina
Jul 25 at 21:25
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
I believe you've flipped a negative during the integration
– Atsina
Jul 25 at 21:35
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
This question can be generalized. Let $f(x)=int_a(x)^b(x)h(c(x)+y)dy$, where $a(x),b(x),c(x),h(x)$ are all known. Then $f(x)=H(c(x)+b(x))-H(c(x)+a(x))$ where $H(x)$ may not be explicitly representable, but $H'(x)=h(x)$. Then $f'(x)=(c'(x)+b'(x))h(c(x)+b(x))-(c'(x)+a'(x))(h(c(x)+a(x))$. The chain rule is used at the end.
– herb steinberg
Jul 26 at 16:19
add a comment |Â
up vote
0
down vote
Hint:
Let $$F(x,t)= int_0^x tan(t+y)dy$$
Then we have $$f(x)= F(x,x^2)-F(x,x)$$
NOTE THAT $partial_x F(x,t) = tan(t+x)$ and $partial_t F(x,t) = tan(x+t)- tan(t)$
can you conclude?
add a comment |Â
up vote
0
down vote
Hint:
Let $$F(x,t)= int_0^x tan(t+y)dy$$
Then we have $$f(x)= F(x,x^2)-F(x,x)$$
NOTE THAT $partial_x F(x,t) = tan(t+x)$ and $partial_t F(x,t) = tan(x+t)- tan(t)$
can you conclude?
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint:
Let $$F(x,t)= int_0^x tan(t+y)dy$$
Then we have $$f(x)= F(x,x^2)-F(x,x)$$
NOTE THAT $partial_x F(x,t) = tan(t+x)$ and $partial_t F(x,t) = tan(x+t)- tan(t)$
can you conclude?
Hint:
Let $$F(x,t)= int_0^x tan(t+y)dy$$
Then we have $$f(x)= F(x,x^2)-F(x,x)$$
NOTE THAT $partial_x F(x,t) = tan(t+x)$ and $partial_t F(x,t) = tan(x+t)- tan(t)$
can you conclude?
edited Jul 26 at 2:56
answered Jul 26 at 2:46


Guy Fsone
16.8k42671
16.8k42671
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862820%2fcalculate-the-derivative-of-fx-int-xx2-tanxy-dy-on-the-open-interva%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password