Calculate $lim_n rightarrow inftyn^x (a_1.a_2…a_n)^frac1n$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite
2













Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate

$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$




My attempts : i take $a_1=a_2 =.......=a_n = a$



after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$



Is it correct ?? or not



pliz help me,



any HINTS/SOLUTion.....







share|cite|improve this question





















  • Or this one: math.stackexchange.com/q/352935/42969.
    – Martin R
    Jul 20 at 11:29










  • Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
    – Stan Tendijck
    Jul 20 at 11:30







  • 1




    No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
    – Batominovski
    Jul 20 at 11:44






  • 1




    @MartinR But please don't delete both links. They are very useful to this problem.
    – Batominovski
    Jul 20 at 11:47






  • 1




    @JoséCarlosSantos This is not a duplicate. Please read the comments.
    – Batominovski
    Jul 20 at 13:54














up vote
5
down vote

favorite
2













Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate

$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$




My attempts : i take $a_1=a_2 =.......=a_n = a$



after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$



Is it correct ?? or not



pliz help me,



any HINTS/SOLUTion.....







share|cite|improve this question





















  • Or this one: math.stackexchange.com/q/352935/42969.
    – Martin R
    Jul 20 at 11:29










  • Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
    – Stan Tendijck
    Jul 20 at 11:30







  • 1




    No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
    – Batominovski
    Jul 20 at 11:44






  • 1




    @MartinR But please don't delete both links. They are very useful to this problem.
    – Batominovski
    Jul 20 at 11:47






  • 1




    @JoséCarlosSantos This is not a duplicate. Please read the comments.
    – Batominovski
    Jul 20 at 13:54












up vote
5
down vote

favorite
2









up vote
5
down vote

favorite
2






2






Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate

$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$




My attempts : i take $a_1=a_2 =.......=a_n = a$



after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$



Is it correct ?? or not



pliz help me,



any HINTS/SOLUTion.....







share|cite|improve this question














Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate

$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$




My attempts : i take $a_1=a_2 =.......=a_n = a$



after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$



Is it correct ?? or not



pliz help me,



any HINTS/SOLUTion.....









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 20 at 11:25









Nosrati

19.5k41544




19.5k41544









asked Jul 20 at 11:18









stupid

55819




55819











  • Or this one: math.stackexchange.com/q/352935/42969.
    – Martin R
    Jul 20 at 11:29










  • Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
    – Stan Tendijck
    Jul 20 at 11:30







  • 1




    No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
    – Batominovski
    Jul 20 at 11:44






  • 1




    @MartinR But please don't delete both links. They are very useful to this problem.
    – Batominovski
    Jul 20 at 11:47






  • 1




    @JoséCarlosSantos This is not a duplicate. Please read the comments.
    – Batominovski
    Jul 20 at 13:54
















  • Or this one: math.stackexchange.com/q/352935/42969.
    – Martin R
    Jul 20 at 11:29










  • Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
    – Stan Tendijck
    Jul 20 at 11:30







  • 1




    No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
    – Batominovski
    Jul 20 at 11:44






  • 1




    @MartinR But please don't delete both links. They are very useful to this problem.
    – Batominovski
    Jul 20 at 11:47






  • 1




    @JoséCarlosSantos This is not a duplicate. Please read the comments.
    – Batominovski
    Jul 20 at 13:54















Or this one: math.stackexchange.com/q/352935/42969.
– Martin R
Jul 20 at 11:29




Or this one: math.stackexchange.com/q/352935/42969.
– Martin R
Jul 20 at 11:29












Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
– Stan Tendijck
Jul 20 at 11:30





Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
– Stan Tendijck
Jul 20 at 11:30





1




1




No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
– Batominovski
Jul 20 at 11:44




No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
– Batominovski
Jul 20 at 11:44




1




1




@MartinR But please don't delete both links. They are very useful to this problem.
– Batominovski
Jul 20 at 11:47




@MartinR But please don't delete both links. They are very useful to this problem.
– Batominovski
Jul 20 at 11:47




1




1




@JoséCarlosSantos This is not a duplicate. Please read the comments.
– Batominovski
Jul 20 at 13:54




@JoséCarlosSantos This is not a duplicate. Please read the comments.
– Batominovski
Jul 20 at 13:54










3 Answers
3






active

oldest

votes

















up vote
4
down vote



accepted










Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
$$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
$$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$






share|cite|improve this answer






























    up vote
    2
    down vote













    Since
    $a_n approx an^-x$,



    $beginarray\
    n^x (prod_k=1^na_k)^frac1n
    &approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
    &= n^x left(a^nn!^-xright)^frac1n\
    &= n^x aleft(n!^1/nright)^-x\
    &approx n^x aleft(n/eright)^-x\
    &= ae^x\
    endarray
    $






    share|cite|improve this answer




























      up vote
      1
      down vote













      Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.






      share|cite|improve this answer





















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857537%2fcalculate-lim-n-rightarrow-inftynx-a-1-a-2-a-n-frac1n%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        4
        down vote



        accepted










        Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
        $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
        Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
        $$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$






        share|cite|improve this answer



























          up vote
          4
          down vote



          accepted










          Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
          $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
          Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
          $$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$






          share|cite|improve this answer

























            up vote
            4
            down vote



            accepted







            up vote
            4
            down vote



            accepted






            Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
            $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
            Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
            $$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$






            share|cite|improve this answer















            Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
            $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
            Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
            $$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$







            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Jul 20 at 12:11


























            answered Jul 20 at 11:53









            Batominovski

            23.2k22777




            23.2k22777




















                up vote
                2
                down vote













                Since
                $a_n approx an^-x$,



                $beginarray\
                n^x (prod_k=1^na_k)^frac1n
                &approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
                &= n^x left(a^nn!^-xright)^frac1n\
                &= n^x aleft(n!^1/nright)^-x\
                &approx n^x aleft(n/eright)^-x\
                &= ae^x\
                endarray
                $






                share|cite|improve this answer

























                  up vote
                  2
                  down vote













                  Since
                  $a_n approx an^-x$,



                  $beginarray\
                  n^x (prod_k=1^na_k)^frac1n
                  &approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
                  &= n^x left(a^nn!^-xright)^frac1n\
                  &= n^x aleft(n!^1/nright)^-x\
                  &approx n^x aleft(n/eright)^-x\
                  &= ae^x\
                  endarray
                  $






                  share|cite|improve this answer























                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Since
                    $a_n approx an^-x$,



                    $beginarray\
                    n^x (prod_k=1^na_k)^frac1n
                    &approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
                    &= n^x left(a^nn!^-xright)^frac1n\
                    &= n^x aleft(n!^1/nright)^-x\
                    &approx n^x aleft(n/eright)^-x\
                    &= ae^x\
                    endarray
                    $






                    share|cite|improve this answer













                    Since
                    $a_n approx an^-x$,



                    $beginarray\
                    n^x (prod_k=1^na_k)^frac1n
                    &approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
                    &= n^x left(a^nn!^-xright)^frac1n\
                    &= n^x aleft(n!^1/nright)^-x\
                    &approx n^x aleft(n/eright)^-x\
                    &= ae^x\
                    endarray
                    $







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 24 at 19:06









                    marty cohen

                    69.2k446122




                    69.2k446122




















                        up vote
                        1
                        down vote













                        Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote













                          Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.






                          share|cite|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.






                            share|cite|improve this answer













                            Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 25 at 0:42









                            Paramanand Singh

                            45.2k553142




                            45.2k553142






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857537%2fcalculate-lim-n-rightarrow-inftynx-a-1-a-2-a-n-frac1n%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                Comments

                                Popular posts from this blog

                                What is the equation of a 3D cone with generalised tilt?

                                Color the edges and diagonals of a regular polygon

                                Relationship between determinant of matrix and determinant of adjoint?