Calculate $lim_n rightarrow inftyn^x (a_1.a_2â¦a_n)^frac1n$?
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate
$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$
My attempts : i take $a_1=a_2 =.......=a_n = a$
after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$
Is it correct ?? or not
pliz help me,
any HINTS/SOLUTion.....
calculus real-analysis
 |Â
show 3 more comments
up vote
5
down vote
favorite
Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate
$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$
My attempts : i take $a_1=a_2 =.......=a_n = a$
after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$
Is it correct ?? or not
pliz help me,
any HINTS/SOLUTion.....
calculus real-analysis
Or this one: math.stackexchange.com/q/352935/42969.
â Martin R
Jul 20 at 11:29
Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
â Stan Tendijck
Jul 20 at 11:30
1
No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
â Batominovski
Jul 20 at 11:44
1
@MartinR But please don't delete both links. They are very useful to this problem.
â Batominovski
Jul 20 at 11:47
1
@JoséCarlosSantos This is not a duplicate. Please read the comments.
â Batominovski
Jul 20 at 13:54
 |Â
show 3 more comments
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate
$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$
My attempts : i take $a_1=a_2 =.......=a_n = a$
after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$
Is it correct ?? or not
pliz help me,
any HINTS/SOLUTion.....
calculus real-analysis
Suppose that $a_n$ is a sequence such that $displaystylelim_n rightarrowinfty n^xa_n=a $ for some real $x$. Calculate
$$lim_n rightarrow inftyn^x (a_1.a_2......a_n)^frac1n$$
My attempts : i take $a_1=a_2 =.......=a_n = a$
after that $lim_n rightarrow infty$ $n^x (a_1.a_2......a_n)^frac1n= infty . a = infty$
Is it correct ?? or not
pliz help me,
any HINTS/SOLUTion.....
calculus real-analysis
edited Jul 20 at 11:25
Nosrati
19.5k41544
19.5k41544
asked Jul 20 at 11:18
stupid
55819
55819
Or this one: math.stackexchange.com/q/352935/42969.
â Martin R
Jul 20 at 11:29
Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
â Stan Tendijck
Jul 20 at 11:30
1
No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
â Batominovski
Jul 20 at 11:44
1
@MartinR But please don't delete both links. They are very useful to this problem.
â Batominovski
Jul 20 at 11:47
1
@JoséCarlosSantos This is not a duplicate. Please read the comments.
â Batominovski
Jul 20 at 13:54
 |Â
show 3 more comments
Or this one: math.stackexchange.com/q/352935/42969.
â Martin R
Jul 20 at 11:29
Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
â Stan Tendijck
Jul 20 at 11:30
1
No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
â Batominovski
Jul 20 at 11:44
1
@MartinR But please don't delete both links. They are very useful to this problem.
â Batominovski
Jul 20 at 11:47
1
@JoséCarlosSantos This is not a duplicate. Please read the comments.
â Batominovski
Jul 20 at 13:54
Or this one: math.stackexchange.com/q/352935/42969.
â Martin R
Jul 20 at 11:29
Or this one: math.stackexchange.com/q/352935/42969.
â Martin R
Jul 20 at 11:29
Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
â Stan Tendijck
Jul 20 at 11:30
Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
â Stan Tendijck
Jul 20 at 11:30
1
1
No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
â Batominovski
Jul 20 at 11:44
No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
â Batominovski
Jul 20 at 11:44
1
1
@MartinR But please don't delete both links. They are very useful to this problem.
â Batominovski
Jul 20 at 11:47
@MartinR But please don't delete both links. They are very useful to this problem.
â Batominovski
Jul 20 at 11:47
1
1
@JoséCarlosSantos This is not a duplicate. Please read the comments.
â Batominovski
Jul 20 at 13:54
@JoséCarlosSantos This is not a duplicate. Please read the comments.
â Batominovski
Jul 20 at 13:54
 |Â
show 3 more comments
3 Answers
3
active
oldest
votes
up vote
4
down vote
accepted
Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
$$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
$$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$
add a comment |Â
up vote
2
down vote
Since
$a_n approx an^-x$,
$beginarray\
n^x (prod_k=1^na_k)^frac1n
&approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
&= n^x left(a^nn!^-xright)^frac1n\
&= n^x aleft(n!^1/nright)^-x\
&approx n^x aleft(n/eright)^-x\
&= ae^x\
endarray
$
add a comment |Â
up vote
1
down vote
Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
$$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
$$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$
add a comment |Â
up vote
4
down vote
accepted
Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
$$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
$$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
$$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
$$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$
Assume that $a_n> 0$ for every positive integer $n$; otherwise the limit may not exist. Set $z_n:=n^x,a_n$ like Martin R recommended. Thus,
$$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prodlimits_i=1^n,i^xright)^frac1n,left(prodlimits_i=1^n,z_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,z_iright)^frac1n,.$$
Now, since $displaystylelim_ntoinfty,z_n=a$, we have $displaystylelim_ntoinfty,left(prod_i=1^n,z_iright)^frac1n=a$ (see Martin R's link in the comments above). Furthermore, Stirling's approximation $n!approx sqrt2pi nleft(fracntexteright)^n$ implies that
$$lim_ntoinfty,left(fracn^nn!right)^fracxn=lim_ntoinfty,left(fractexte^nsqrt2pi nright)^fracxn=exp(x),.$$ Consequently, $$lim_ntoinfty,n^x,left(prod_i=1^n,a_iright)^frac1n=a,exp(x),.$$
edited Jul 20 at 12:11
answered Jul 20 at 11:53
Batominovski
23.2k22777
23.2k22777
add a comment |Â
add a comment |Â
up vote
2
down vote
Since
$a_n approx an^-x$,
$beginarray\
n^x (prod_k=1^na_k)^frac1n
&approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
&= n^x left(a^nn!^-xright)^frac1n\
&= n^x aleft(n!^1/nright)^-x\
&approx n^x aleft(n/eright)^-x\
&= ae^x\
endarray
$
add a comment |Â
up vote
2
down vote
Since
$a_n approx an^-x$,
$beginarray\
n^x (prod_k=1^na_k)^frac1n
&approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
&= n^x left(a^nn!^-xright)^frac1n\
&= n^x aleft(n!^1/nright)^-x\
&approx n^x aleft(n/eright)^-x\
&= ae^x\
endarray
$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Since
$a_n approx an^-x$,
$beginarray\
n^x (prod_k=1^na_k)^frac1n
&approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
&= n^x left(a^nn!^-xright)^frac1n\
&= n^x aleft(n!^1/nright)^-x\
&approx n^x aleft(n/eright)^-x\
&= ae^x\
endarray
$
Since
$a_n approx an^-x$,
$beginarray\
n^x (prod_k=1^na_k)^frac1n
&approx n^x left(prod_k=1^n(ak^-x)right)^frac1n\
&= n^x left(a^nn!^-xright)^frac1n\
&= n^x aleft(n!^1/nright)^-x\
&approx n^x aleft(n/eright)^-x\
&= ae^x\
endarray
$
answered Jul 24 at 19:06
marty cohen
69.2k446122
69.2k446122
add a comment |Â
add a comment |Â
up vote
1
down vote
Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.
add a comment |Â
up vote
1
down vote
Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.
Consider $b_n=n^nx a_1 a_2dots a_n$ and then $b_n+1/b_n=(1+n^-1)^nx(n+1)^xa_n+1to e^xa$ and hence $b_n^1/nto ae^x$.
answered Jul 25 at 0:42
Paramanand Singh
45.2k553142
45.2k553142
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857537%2fcalculate-lim-n-rightarrow-inftynx-a-1-a-2-a-n-frac1n%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Or this one: math.stackexchange.com/q/352935/42969.
â Martin R
Jul 20 at 11:29
Well, the first error that you make is in taking $a_i = a$. Since, then $lim n^x a_n = a lim n^x $ which equals $0$ if $x<0$, $a$ if $x=0$ and $textsign(a)infty$ if $x>0$.
â Stan Tendijck
Jul 20 at 11:30
1
No, there will be an extra factor. Note $$n^x,left(prod_i=1^n,a_iright)^frac1n=fracn^xleft(prod_i=1^n,i^xright)^frac1n,left(prod_i=1^n,x_iright)^frac1n=left(fracn^nn!right)^fracxn,left(prod_i=1^n,x_iright)^frac1n,.$$
â Batominovski
Jul 20 at 11:44
1
@MartinR But please don't delete both links. They are very useful to this problem.
â Batominovski
Jul 20 at 11:47
1
@JoséCarlosSantos This is not a duplicate. Please read the comments.
â Batominovski
Jul 20 at 13:54