Find $log _2448$ if $log_1236=k$
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
Find $log _2448$ if $log_1236=k$
My method:
We have $$fraclog 36log 12=k$$ $implies$
$$fraclog 12+log 3log 12=k$$ $implies$
$$fraclog32log 2+log 3=k-1$$ So
$$log 3=(k-1)t tag1$$
$$2log 2+log 3=t$$ $implies$
$$log 2=frac(2-k)t2 tag2$$
Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$
is there any other approach?
algebra-precalculus logarithms exponential-function ratio
add a comment |Â
up vote
4
down vote
favorite
Find $log _2448$ if $log_1236=k$
My method:
We have $$fraclog 36log 12=k$$ $implies$
$$fraclog 12+log 3log 12=k$$ $implies$
$$fraclog32log 2+log 3=k-1$$ So
$$log 3=(k-1)t tag1$$
$$2log 2+log 3=t$$ $implies$
$$log 2=frac(2-k)t2 tag2$$
Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$
is there any other approach?
algebra-precalculus logarithms exponential-function ratio
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Find $log _2448$ if $log_1236=k$
My method:
We have $$fraclog 36log 12=k$$ $implies$
$$fraclog 12+log 3log 12=k$$ $implies$
$$fraclog32log 2+log 3=k-1$$ So
$$log 3=(k-1)t tag1$$
$$2log 2+log 3=t$$ $implies$
$$log 2=frac(2-k)t2 tag2$$
Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$
is there any other approach?
algebra-precalculus logarithms exponential-function ratio
Find $log _2448$ if $log_1236=k$
My method:
We have $$fraclog 36log 12=k$$ $implies$
$$fraclog 12+log 3log 12=k$$ $implies$
$$fraclog32log 2+log 3=k-1$$ So
$$log 3=(k-1)t tag1$$
$$2log 2+log 3=t$$ $implies$
$$log 2=frac(2-k)t2 tag2$$
Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$
is there any other approach?
algebra-precalculus logarithms exponential-function ratio
asked Jul 20 at 18:50
Umesh shankar
2,28611018
2,28611018
add a comment |Â
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
4
down vote
accepted
It seems easier to use $log_12$ rather than $log$.
$log_12(36)=log_12(3)+1=k$, and
$$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
or $$log_12(2)=1-frack2$$
Thus
$$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
$$=frac2-k+12-frack2=frac6-2k4-k.$$
add a comment |Â
up vote
0
down vote
With $z = log_2(3)$:
$$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
$$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$
Just solve for $z$ and plug:
$$z = frac2K-2K-2$$
$$L = frac2K - 6K-4$$
add a comment |Â
up vote
0
down vote
We have
$$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$
add a comment |Â
up vote
0
down vote
You can convert all to the smallest common base $2$:
$$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
Hence:
$$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
It seems easier to use $log_12$ rather than $log$.
$log_12(36)=log_12(3)+1=k$, and
$$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
or $$log_12(2)=1-frack2$$
Thus
$$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
$$=frac2-k+12-frack2=frac6-2k4-k.$$
add a comment |Â
up vote
4
down vote
accepted
It seems easier to use $log_12$ rather than $log$.
$log_12(36)=log_12(3)+1=k$, and
$$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
or $$log_12(2)=1-frack2$$
Thus
$$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
$$=frac2-k+12-frack2=frac6-2k4-k.$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
It seems easier to use $log_12$ rather than $log$.
$log_12(36)=log_12(3)+1=k$, and
$$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
or $$log_12(2)=1-frack2$$
Thus
$$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
$$=frac2-k+12-frack2=frac6-2k4-k.$$
It seems easier to use $log_12$ rather than $log$.
$log_12(36)=log_12(3)+1=k$, and
$$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
or $$log_12(2)=1-frack2$$
Thus
$$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
$$=frac2-k+12-frack2=frac6-2k4-k.$$
answered Jul 20 at 19:03
jgon
8,54611435
8,54611435
add a comment |Â
add a comment |Â
up vote
0
down vote
With $z = log_2(3)$:
$$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
$$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$
Just solve for $z$ and plug:
$$z = frac2K-2K-2$$
$$L = frac2K - 6K-4$$
add a comment |Â
up vote
0
down vote
With $z = log_2(3)$:
$$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
$$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$
Just solve for $z$ and plug:
$$z = frac2K-2K-2$$
$$L = frac2K - 6K-4$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
With $z = log_2(3)$:
$$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
$$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$
Just solve for $z$ and plug:
$$z = frac2K-2K-2$$
$$L = frac2K - 6K-4$$
With $z = log_2(3)$:
$$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
$$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$
Just solve for $z$ and plug:
$$z = frac2K-2K-2$$
$$L = frac2K - 6K-4$$
answered Jul 20 at 19:17
DanielV
17.4k42651
17.4k42651
add a comment |Â
add a comment |Â
up vote
0
down vote
We have
$$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$
add a comment |Â
up vote
0
down vote
We have
$$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
We have
$$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$
We have
$$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$
edited Jul 20 at 19:49
answered Jul 20 at 19:42
gimusi
65.4k73584
65.4k73584
add a comment |Â
add a comment |Â
up vote
0
down vote
You can convert all to the smallest common base $2$:
$$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
Hence:
$$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$
add a comment |Â
up vote
0
down vote
You can convert all to the smallest common base $2$:
$$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
Hence:
$$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
You can convert all to the smallest common base $2$:
$$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
Hence:
$$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$
You can convert all to the smallest common base $2$:
$$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
Hence:
$$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$
answered Jul 21 at 13:04
farruhota
13.7k2632
13.7k2632
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857929%2ffind-log-2448-if-log-1236-k%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password