Find $log _2448$ if $log_1236=k$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












Find $log _2448$ if $log_1236=k$



My method:



We have $$fraclog 36log 12=k$$ $implies$



$$fraclog 12+log 3log 12=k$$ $implies$



$$fraclog32log 2+log 3=k-1$$ So



$$log 3=(k-1)t tag1$$



$$2log 2+log 3=t$$ $implies$



$$log 2=frac(2-k)t2 tag2$$



Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$



is there any other approach?







share|cite|improve this question























    up vote
    4
    down vote

    favorite
    1












    Find $log _2448$ if $log_1236=k$



    My method:



    We have $$fraclog 36log 12=k$$ $implies$



    $$fraclog 12+log 3log 12=k$$ $implies$



    $$fraclog32log 2+log 3=k-1$$ So



    $$log 3=(k-1)t tag1$$



    $$2log 2+log 3=t$$ $implies$



    $$log 2=frac(2-k)t2 tag2$$



    Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$



    is there any other approach?







    share|cite|improve this question





















      up vote
      4
      down vote

      favorite
      1









      up vote
      4
      down vote

      favorite
      1






      1





      Find $log _2448$ if $log_1236=k$



      My method:



      We have $$fraclog 36log 12=k$$ $implies$



      $$fraclog 12+log 3log 12=k$$ $implies$



      $$fraclog32log 2+log 3=k-1$$ So



      $$log 3=(k-1)t tag1$$



      $$2log 2+log 3=t$$ $implies$



      $$log 2=frac(2-k)t2 tag2$$



      Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$



      is there any other approach?







      share|cite|improve this question











      Find $log _2448$ if $log_1236=k$



      My method:



      We have $$fraclog 36log 12=k$$ $implies$



      $$fraclog 12+log 3log 12=k$$ $implies$



      $$fraclog32log 2+log 3=k-1$$ So



      $$log 3=(k-1)t tag1$$



      $$2log 2+log 3=t$$ $implies$



      $$log 2=frac(2-k)t2 tag2$$



      Now $$log _2448=fraclog 48log 24=frac4log 2+log 33log 2+log 3=frac2(2-k)+k-13left(frac2-k2right)+k-1=frac6-2k4-k$$



      is there any other approach?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 20 at 18:50









      Umesh shankar

      2,28611018




      2,28611018




















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          It seems easier to use $log_12$ rather than $log$.



          $log_12(36)=log_12(3)+1=k$, and
          $$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
          or $$log_12(2)=1-frack2$$



          Thus
          $$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
          $$=frac2-k+12-frack2=frac6-2k4-k.$$






          share|cite|improve this answer




























            up vote
            0
            down vote













            With $z = log_2(3)$:



            $$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
            $$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$



            Just solve for $z$ and plug:



            $$z = frac2K-2K-2$$
            $$L = frac2K - 6K-4$$






            share|cite|improve this answer




























              up vote
              0
              down vote













              We have



              $$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$






              share|cite|improve this answer






























                up vote
                0
                down vote













                You can convert all to the smallest common base $2$:
                $$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
                Hence:
                $$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$






                share|cite|improve this answer





















                  Your Answer




                  StackExchange.ifUsing("editor", function ()
                  return StackExchange.using("mathjaxEditing", function ()
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  );
                  );
                  , "mathjax-editing");

                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  convertImagesToLinks: true,
                  noModals: false,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );








                   

                  draft saved


                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857929%2ffind-log-2448-if-log-1236-k%23new-answer', 'question_page');

                  );

                  Post as a guest






























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes








                  up vote
                  4
                  down vote



                  accepted










                  It seems easier to use $log_12$ rather than $log$.



                  $log_12(36)=log_12(3)+1=k$, and
                  $$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
                  or $$log_12(2)=1-frack2$$



                  Thus
                  $$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
                  $$=frac2-k+12-frack2=frac6-2k4-k.$$






                  share|cite|improve this answer

























                    up vote
                    4
                    down vote



                    accepted










                    It seems easier to use $log_12$ rather than $log$.



                    $log_12(36)=log_12(3)+1=k$, and
                    $$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
                    or $$log_12(2)=1-frack2$$



                    Thus
                    $$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
                    $$=frac2-k+12-frack2=frac6-2k4-k.$$






                    share|cite|improve this answer























                      up vote
                      4
                      down vote



                      accepted







                      up vote
                      4
                      down vote



                      accepted






                      It seems easier to use $log_12$ rather than $log$.



                      $log_12(36)=log_12(3)+1=k$, and
                      $$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
                      or $$log_12(2)=1-frack2$$



                      Thus
                      $$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
                      $$=frac2-k+12-frack2=frac6-2k4-k.$$






                      share|cite|improve this answer













                      It seems easier to use $log_12$ rather than $log$.



                      $log_12(36)=log_12(3)+1=k$, and
                      $$2log_12(2)+log_12(3)=log_12(12)=1,$$ so $2log_12(2)=2-k$,
                      or $$log_12(2)=1-frack2$$



                      Thus
                      $$log_24(48)= fraclog_12(48)log_12(24)=frac2log_12(2)+1log_12(2)+1$$
                      $$=frac2-k+12-frack2=frac6-2k4-k.$$







                      share|cite|improve this answer













                      share|cite|improve this answer



                      share|cite|improve this answer











                      answered Jul 20 at 19:03









                      jgon

                      8,54611435




                      8,54611435




















                          up vote
                          0
                          down vote













                          With $z = log_2(3)$:



                          $$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
                          $$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$



                          Just solve for $z$ and plug:



                          $$z = frac2K-2K-2$$
                          $$L = frac2K - 6K-4$$






                          share|cite|improve this answer

























                            up vote
                            0
                            down vote













                            With $z = log_2(3)$:



                            $$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
                            $$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$



                            Just solve for $z$ and plug:



                            $$z = frac2K-2K-2$$
                            $$L = frac2K - 6K-4$$






                            share|cite|improve this answer























                              up vote
                              0
                              down vote










                              up vote
                              0
                              down vote









                              With $z = log_2(3)$:



                              $$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
                              $$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$



                              Just solve for $z$ and plug:



                              $$z = frac2K-2K-2$$
                              $$L = frac2K - 6K-4$$






                              share|cite|improve this answer













                              With $z = log_2(3)$:



                              $$L = log_24(48) = fracln(48)ln(24) = fracln(2^4times 3)ln(2^3 times 3) = frac4ln(2) + ln(3)3ln(2) + ln(3) = frac4+z3 + z$$
                              $$K = log_12(36) = fracln(36)ln(12) = fracln(2^2times 3^2)ln(2^2 times 3) = frac2ln(2) + 2ln(3)2ln(2) + ln(3) = frac2+2z2 + z$$



                              Just solve for $z$ and plug:



                              $$z = frac2K-2K-2$$
                              $$L = frac2K - 6K-4$$







                              share|cite|improve this answer













                              share|cite|improve this answer



                              share|cite|improve this answer











                              answered Jul 20 at 19:17









                              DanielV

                              17.4k42651




                              17.4k42651




















                                  up vote
                                  0
                                  down vote













                                  We have



                                  $$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$






                                  share|cite|improve this answer



























                                    up vote
                                    0
                                    down vote













                                    We have



                                    $$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$






                                    share|cite|improve this answer

























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      We have



                                      $$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$






                                      share|cite|improve this answer















                                      We have



                                      $$log _2448=fraclog _1248log _1224=fraclog _1236+log _12frac43log _1236+log _12frac23=frack+log _12frac43k+log _12frac23$$







                                      share|cite|improve this answer















                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Jul 20 at 19:49


























                                      answered Jul 20 at 19:42









                                      gimusi

                                      65.4k73584




                                      65.4k73584




















                                          up vote
                                          0
                                          down vote













                                          You can convert all to the smallest common base $2$:
                                          $$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
                                          Hence:
                                          $$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$






                                          share|cite|improve this answer

























                                            up vote
                                            0
                                            down vote













                                            You can convert all to the smallest common base $2$:
                                            $$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
                                            Hence:
                                            $$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$






                                            share|cite|improve this answer























                                              up vote
                                              0
                                              down vote










                                              up vote
                                              0
                                              down vote









                                              You can convert all to the smallest common base $2$:
                                              $$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
                                              Hence:
                                              $$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$






                                              share|cite|improve this answer













                                              You can convert all to the smallest common base $2$:
                                              $$log_1236=fraclog_236log_2 12=frac2+2log_2 32+log_2 3=k Rightarrow log_2 3=frac2k-22-k.$$
                                              Hence:
                                              $$log _2448=fraclog_2 48log_2 24=frac4+log_233+log_23=frac4+frac2k-22-k3+frac2k-22-k=frac6-2k4-k.$$







                                              share|cite|improve this answer













                                              share|cite|improve this answer



                                              share|cite|improve this answer











                                              answered Jul 21 at 13:04









                                              farruhota

                                              13.7k2632




                                              13.7k2632






















                                                   

                                                  draft saved


                                                  draft discarded


























                                                   


                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857929%2ffind-log-2448-if-log-1236-k%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest













































































                                                  Comments

                                                  Popular posts from this blog

                                                  What is the equation of a 3D cone with generalised tilt?

                                                  Color the edges and diagonals of a regular polygon

                                                  Relationship between determinant of matrix and determinant of adjoint?