Computing the norm of $hatf_epsilon(xi)=chi_[x-epsilon,x+epsilon](|xi|).$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Given $fin L^2(mathbbR^n)$. For any $epsilon in(0,x)$, define $$hatf_epsilon(xi)=chi_[x-epsilon,x+epsilon](|xi|).$$ Where $hatf_epsilon(xi)$ is the Fourier Transform $f$.
I am wondering how to compute the following:
- $f$
- $|f|$
- $|hatf|$
- $|chi_[x-epsilon,x+epsilon](|xi|)|$.
I know that
begineqnarray*
% nonumber to remove numbering (before each equation)
f(x) &=& 1/(2pi)^nint hatxie^ixxidxi \
&=&1/(2pi)^nint chi_[x-epsilon,x+epsilon](|xi|)e^ixxidxi$\
&=&1/(2pi)^nint_x-epsilon^x+epsilone^ixxidxi\
&=&1/(2pi)^ncdot 1/ixcdot (e^ix(x+epsilon)-e^ix(x-epsilon)).
endeqnarray*
But this is not leading me to anything interesting!!
I also think that after obtaining $f$ I can go on and use $|f|_L^2=1/(2pi)^n/2|hatf|_L^2$ to obtain $hatf$. I need some help please.
functional-analysis fourier-analysis
add a comment |Â
up vote
0
down vote
favorite
Given $fin L^2(mathbbR^n)$. For any $epsilon in(0,x)$, define $$hatf_epsilon(xi)=chi_[x-epsilon,x+epsilon](|xi|).$$ Where $hatf_epsilon(xi)$ is the Fourier Transform $f$.
I am wondering how to compute the following:
- $f$
- $|f|$
- $|hatf|$
- $|chi_[x-epsilon,x+epsilon](|xi|)|$.
I know that
begineqnarray*
% nonumber to remove numbering (before each equation)
f(x) &=& 1/(2pi)^nint hatxie^ixxidxi \
&=&1/(2pi)^nint chi_[x-epsilon,x+epsilon](|xi|)e^ixxidxi$\
&=&1/(2pi)^nint_x-epsilon^x+epsilone^ixxidxi\
&=&1/(2pi)^ncdot 1/ixcdot (e^ix(x+epsilon)-e^ix(x-epsilon)).
endeqnarray*
But this is not leading me to anything interesting!!
I also think that after obtaining $f$ I can go on and use $|f|_L^2=1/(2pi)^n/2|hatf|_L^2$ to obtain $hatf$. I need some help please.
functional-analysis fourier-analysis
Plancherel's Theorem should take care of the hard parts.
â DisintegratingByParts
Jul 20 at 18:51
How can I use the Placherel's Theorem? I need some ideas
â Sulayman
Jul 21 at 21:50
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given $fin L^2(mathbbR^n)$. For any $epsilon in(0,x)$, define $$hatf_epsilon(xi)=chi_[x-epsilon,x+epsilon](|xi|).$$ Where $hatf_epsilon(xi)$ is the Fourier Transform $f$.
I am wondering how to compute the following:
- $f$
- $|f|$
- $|hatf|$
- $|chi_[x-epsilon,x+epsilon](|xi|)|$.
I know that
begineqnarray*
% nonumber to remove numbering (before each equation)
f(x) &=& 1/(2pi)^nint hatxie^ixxidxi \
&=&1/(2pi)^nint chi_[x-epsilon,x+epsilon](|xi|)e^ixxidxi$\
&=&1/(2pi)^nint_x-epsilon^x+epsilone^ixxidxi\
&=&1/(2pi)^ncdot 1/ixcdot (e^ix(x+epsilon)-e^ix(x-epsilon)).
endeqnarray*
But this is not leading me to anything interesting!!
I also think that after obtaining $f$ I can go on and use $|f|_L^2=1/(2pi)^n/2|hatf|_L^2$ to obtain $hatf$. I need some help please.
functional-analysis fourier-analysis
Given $fin L^2(mathbbR^n)$. For any $epsilon in(0,x)$, define $$hatf_epsilon(xi)=chi_[x-epsilon,x+epsilon](|xi|).$$ Where $hatf_epsilon(xi)$ is the Fourier Transform $f$.
I am wondering how to compute the following:
- $f$
- $|f|$
- $|hatf|$
- $|chi_[x-epsilon,x+epsilon](|xi|)|$.
I know that
begineqnarray*
% nonumber to remove numbering (before each equation)
f(x) &=& 1/(2pi)^nint hatxie^ixxidxi \
&=&1/(2pi)^nint chi_[x-epsilon,x+epsilon](|xi|)e^ixxidxi$\
&=&1/(2pi)^nint_x-epsilon^x+epsilone^ixxidxi\
&=&1/(2pi)^ncdot 1/ixcdot (e^ix(x+epsilon)-e^ix(x-epsilon)).
endeqnarray*
But this is not leading me to anything interesting!!
I also think that after obtaining $f$ I can go on and use $|f|_L^2=1/(2pi)^n/2|hatf|_L^2$ to obtain $hatf$. I need some help please.
functional-analysis fourier-analysis
asked Jul 20 at 11:57
Sulayman
18717
18717
Plancherel's Theorem should take care of the hard parts.
â DisintegratingByParts
Jul 20 at 18:51
How can I use the Placherel's Theorem? I need some ideas
â Sulayman
Jul 21 at 21:50
add a comment |Â
Plancherel's Theorem should take care of the hard parts.
â DisintegratingByParts
Jul 20 at 18:51
How can I use the Placherel's Theorem? I need some ideas
â Sulayman
Jul 21 at 21:50
Plancherel's Theorem should take care of the hard parts.
â DisintegratingByParts
Jul 20 at 18:51
Plancherel's Theorem should take care of the hard parts.
â DisintegratingByParts
Jul 20 at 18:51
How can I use the Placherel's Theorem? I need some ideas
â Sulayman
Jul 21 at 21:50
How can I use the Placherel's Theorem? I need some ideas
â Sulayman
Jul 21 at 21:50
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857558%2fcomputing-the-norm-of-hatf-epsilon-xi-chi-x-epsilon-x-epsilon-xi%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Plancherel's Theorem should take care of the hard parts.
â DisintegratingByParts
Jul 20 at 18:51
How can I use the Placherel's Theorem? I need some ideas
â Sulayman
Jul 21 at 21:50