If $f$ and $1/f$ are harmonic then $f$ is holomorphic or antiholomorphic

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite












I have this problem.



Let $f:Dto mathbbC$ be a function such that $f$ and $1/f$ are harmonic (Their real and imaginary parts are harmonic). Then $f$ is holomorphic or antiholomorphic.



I tried to solve it by computing the laplacian of real and imaginary parts, but it becomes very cumbersome. Is there a better way?







share|cite|improve this question















  • 1




    It is a cleaner trip if you write the computation using the Wirtinger derivatives. That $f$ is harmonic means that $fracpartialpartial overlinezfracpartialpartial zf=0$. Then, compute $0=fracpartialpartial overlinezfracpartialpartial z(frac1zcirc f)$. The chain rule gives you $=fracpartialpartial overlinez(-frac1f^2)cdot fracpartial fpartial z+left(-frac1f^2right)cdot fracpartialpartial overlinezfracpartialpartial zf$ ...
    – user577471
    Jul 20 at 17:18











  • So, either $fracpartial fpartial z=0$, in which case $f$ is anti-holomorphic, or $fracpartialpartialoverlinezleft(-frac1f^2right)=0$. Do another chain rule to get $2cdot frac1f^3fracpartial fpartialoverlinez=0$, which gives you that $f$ is holomorphic.
    – user577471
    Jul 20 at 17:21















up vote
4
down vote

favorite












I have this problem.



Let $f:Dto mathbbC$ be a function such that $f$ and $1/f$ are harmonic (Their real and imaginary parts are harmonic). Then $f$ is holomorphic or antiholomorphic.



I tried to solve it by computing the laplacian of real and imaginary parts, but it becomes very cumbersome. Is there a better way?







share|cite|improve this question















  • 1




    It is a cleaner trip if you write the computation using the Wirtinger derivatives. That $f$ is harmonic means that $fracpartialpartial overlinezfracpartialpartial zf=0$. Then, compute $0=fracpartialpartial overlinezfracpartialpartial z(frac1zcirc f)$. The chain rule gives you $=fracpartialpartial overlinez(-frac1f^2)cdot fracpartial fpartial z+left(-frac1f^2right)cdot fracpartialpartial overlinezfracpartialpartial zf$ ...
    – user577471
    Jul 20 at 17:18











  • So, either $fracpartial fpartial z=0$, in which case $f$ is anti-holomorphic, or $fracpartialpartialoverlinezleft(-frac1f^2right)=0$. Do another chain rule to get $2cdot frac1f^3fracpartial fpartialoverlinez=0$, which gives you that $f$ is holomorphic.
    – user577471
    Jul 20 at 17:21













up vote
4
down vote

favorite









up vote
4
down vote

favorite











I have this problem.



Let $f:Dto mathbbC$ be a function such that $f$ and $1/f$ are harmonic (Their real and imaginary parts are harmonic). Then $f$ is holomorphic or antiholomorphic.



I tried to solve it by computing the laplacian of real and imaginary parts, but it becomes very cumbersome. Is there a better way?







share|cite|improve this question











I have this problem.



Let $f:Dto mathbbC$ be a function such that $f$ and $1/f$ are harmonic (Their real and imaginary parts are harmonic). Then $f$ is holomorphic or antiholomorphic.



I tried to solve it by computing the laplacian of real and imaginary parts, but it becomes very cumbersome. Is there a better way?









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 20 at 17:04









Nell

33819




33819







  • 1




    It is a cleaner trip if you write the computation using the Wirtinger derivatives. That $f$ is harmonic means that $fracpartialpartial overlinezfracpartialpartial zf=0$. Then, compute $0=fracpartialpartial overlinezfracpartialpartial z(frac1zcirc f)$. The chain rule gives you $=fracpartialpartial overlinez(-frac1f^2)cdot fracpartial fpartial z+left(-frac1f^2right)cdot fracpartialpartial overlinezfracpartialpartial zf$ ...
    – user577471
    Jul 20 at 17:18











  • So, either $fracpartial fpartial z=0$, in which case $f$ is anti-holomorphic, or $fracpartialpartialoverlinezleft(-frac1f^2right)=0$. Do another chain rule to get $2cdot frac1f^3fracpartial fpartialoverlinez=0$, which gives you that $f$ is holomorphic.
    – user577471
    Jul 20 at 17:21













  • 1




    It is a cleaner trip if you write the computation using the Wirtinger derivatives. That $f$ is harmonic means that $fracpartialpartial overlinezfracpartialpartial zf=0$. Then, compute $0=fracpartialpartial overlinezfracpartialpartial z(frac1zcirc f)$. The chain rule gives you $=fracpartialpartial overlinez(-frac1f^2)cdot fracpartial fpartial z+left(-frac1f^2right)cdot fracpartialpartial overlinezfracpartialpartial zf$ ...
    – user577471
    Jul 20 at 17:18











  • So, either $fracpartial fpartial z=0$, in which case $f$ is anti-holomorphic, or $fracpartialpartialoverlinezleft(-frac1f^2right)=0$. Do another chain rule to get $2cdot frac1f^3fracpartial fpartialoverlinez=0$, which gives you that $f$ is holomorphic.
    – user577471
    Jul 20 at 17:21








1




1




It is a cleaner trip if you write the computation using the Wirtinger derivatives. That $f$ is harmonic means that $fracpartialpartial overlinezfracpartialpartial zf=0$. Then, compute $0=fracpartialpartial overlinezfracpartialpartial z(frac1zcirc f)$. The chain rule gives you $=fracpartialpartial overlinez(-frac1f^2)cdot fracpartial fpartial z+left(-frac1f^2right)cdot fracpartialpartial overlinezfracpartialpartial zf$ ...
– user577471
Jul 20 at 17:18





It is a cleaner trip if you write the computation using the Wirtinger derivatives. That $f$ is harmonic means that $fracpartialpartial overlinezfracpartialpartial zf=0$. Then, compute $0=fracpartialpartial overlinezfracpartialpartial z(frac1zcirc f)$. The chain rule gives you $=fracpartialpartial overlinez(-frac1f^2)cdot fracpartial fpartial z+left(-frac1f^2right)cdot fracpartialpartial overlinezfracpartialpartial zf$ ...
– user577471
Jul 20 at 17:18













So, either $fracpartial fpartial z=0$, in which case $f$ is anti-holomorphic, or $fracpartialpartialoverlinezleft(-frac1f^2right)=0$. Do another chain rule to get $2cdot frac1f^3fracpartial fpartialoverlinez=0$, which gives you that $f$ is holomorphic.
– user577471
Jul 20 at 17:21





So, either $fracpartial fpartial z=0$, in which case $f$ is anti-holomorphic, or $fracpartialpartialoverlinezleft(-frac1f^2right)=0$. Do another chain rule to get $2cdot frac1f^3fracpartial fpartialoverlinez=0$, which gives you that $f$ is holomorphic.
– user577471
Jul 20 at 17:21











2 Answers
2






active

oldest

votes

















up vote
4
down vote













Possible idea. Let $f=f(x,y)$. If $f$ and $1/f$ are harmonic then
$$
fracpartial^2 fpartial x^2 + fracpartial^2 fpartial y^2 = 0
$$
$$
fracpartial^2 1/fpartial x^2 + fracpartial^2 1/fpartial y^2 = 0
$$
where
$$
fracpartial 1/fpartial x = -fracpartial fpartial x frac1f^2 qquad fracpartial^2 1/fpartial x^2 = -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3
$$



$$
fracpartial 1/fpartial y = -fracpartial fpartial y frac1f^2 qquad fracpartial^2 1/fpartial y^2 = -fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3
$$
So
$$
-fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3-fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3 = frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)
$$



$$
frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)=0
$$
Since $f not equiv 0$, we have
$$
0=left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2 =left(fracpartial fpartial x+fracpartial f partial yiright)left(fracpartial fpartial x-fracpartial f partial yiright)
$$






share|cite|improve this answer




























    up vote
    2
    down vote













    Let $fracmathrmdmathrmdz=tfrac12(fracmathrmdmathrmdx-mathrmifracmathrmdmathrmdy)$ and $fracmathrmdmathrmdoverlinez=tfrac12(fracmathrmdmathrmdx+mathrmifracmathrmdmathrmdy)$ as usual. Then $$fracmathrmd^2mathrmdz , mathrmdoverlinez = frac14left(fracmathrmd^2mathrmdx^2+ fracmathrmd^2mathrmdy^2right)$$ and $f$ is holomorphic if $fracmathrmdfmathrmdoverlinez=0$ or anti-holomorphic if $fracmathrmdfmathrmdz=0$. Now under the given conditions $$0 = fracmathrmd^2 f^-1mathrmdz , mathrmdoverlinez = 2 f^-3 fracmathrmdfmathrmdz fracmathrmdfmathrmdoverlinez.$$






    share|cite|improve this answer























      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857840%2fif-f-and-1-f-are-harmonic-then-f-is-holomorphic-or-antiholomorphic%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote













      Possible idea. Let $f=f(x,y)$. If $f$ and $1/f$ are harmonic then
      $$
      fracpartial^2 fpartial x^2 + fracpartial^2 fpartial y^2 = 0
      $$
      $$
      fracpartial^2 1/fpartial x^2 + fracpartial^2 1/fpartial y^2 = 0
      $$
      where
      $$
      fracpartial 1/fpartial x = -fracpartial fpartial x frac1f^2 qquad fracpartial^2 1/fpartial x^2 = -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3
      $$



      $$
      fracpartial 1/fpartial y = -fracpartial fpartial y frac1f^2 qquad fracpartial^2 1/fpartial y^2 = -fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3
      $$
      So
      $$
      -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3-fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3 = frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)
      $$



      $$
      frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)=0
      $$
      Since $f not equiv 0$, we have
      $$
      0=left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2 =left(fracpartial fpartial x+fracpartial f partial yiright)left(fracpartial fpartial x-fracpartial f partial yiright)
      $$






      share|cite|improve this answer

























        up vote
        4
        down vote













        Possible idea. Let $f=f(x,y)$. If $f$ and $1/f$ are harmonic then
        $$
        fracpartial^2 fpartial x^2 + fracpartial^2 fpartial y^2 = 0
        $$
        $$
        fracpartial^2 1/fpartial x^2 + fracpartial^2 1/fpartial y^2 = 0
        $$
        where
        $$
        fracpartial 1/fpartial x = -fracpartial fpartial x frac1f^2 qquad fracpartial^2 1/fpartial x^2 = -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3
        $$



        $$
        fracpartial 1/fpartial y = -fracpartial fpartial y frac1f^2 qquad fracpartial^2 1/fpartial y^2 = -fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3
        $$
        So
        $$
        -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3-fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3 = frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)
        $$



        $$
        frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)=0
        $$
        Since $f not equiv 0$, we have
        $$
        0=left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2 =left(fracpartial fpartial x+fracpartial f partial yiright)left(fracpartial fpartial x-fracpartial f partial yiright)
        $$






        share|cite|improve this answer























          up vote
          4
          down vote










          up vote
          4
          down vote









          Possible idea. Let $f=f(x,y)$. If $f$ and $1/f$ are harmonic then
          $$
          fracpartial^2 fpartial x^2 + fracpartial^2 fpartial y^2 = 0
          $$
          $$
          fracpartial^2 1/fpartial x^2 + fracpartial^2 1/fpartial y^2 = 0
          $$
          where
          $$
          fracpartial 1/fpartial x = -fracpartial fpartial x frac1f^2 qquad fracpartial^2 1/fpartial x^2 = -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3
          $$



          $$
          fracpartial 1/fpartial y = -fracpartial fpartial y frac1f^2 qquad fracpartial^2 1/fpartial y^2 = -fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3
          $$
          So
          $$
          -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3-fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3 = frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)
          $$



          $$
          frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)=0
          $$
          Since $f not equiv 0$, we have
          $$
          0=left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2 =left(fracpartial fpartial x+fracpartial f partial yiright)left(fracpartial fpartial x-fracpartial f partial yiright)
          $$






          share|cite|improve this answer













          Possible idea. Let $f=f(x,y)$. If $f$ and $1/f$ are harmonic then
          $$
          fracpartial^2 fpartial x^2 + fracpartial^2 fpartial y^2 = 0
          $$
          $$
          fracpartial^2 1/fpartial x^2 + fracpartial^2 1/fpartial y^2 = 0
          $$
          where
          $$
          fracpartial 1/fpartial x = -fracpartial fpartial x frac1f^2 qquad fracpartial^2 1/fpartial x^2 = -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3
          $$



          $$
          fracpartial 1/fpartial y = -fracpartial fpartial y frac1f^2 qquad fracpartial^2 1/fpartial y^2 = -fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3
          $$
          So
          $$
          -fracpartial^2 fpartial x^2 frac1f^2 +2left(fracpartial fpartial xright)^2frac1f^3-fracpartial^2 fpartial y^2 frac1f^2 +2left(fracpartial fpartial yright)^2frac1f^3 = frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)
          $$



          $$
          frac2f^3left(left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2right)=0
          $$
          Since $f not equiv 0$, we have
          $$
          0=left(fracpartial fpartial xright)^2+left(fracpartial f partial yright)^2 =left(fracpartial fpartial x+fracpartial f partial yiright)left(fracpartial fpartial x-fracpartial f partial yiright)
          $$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 20 at 17:18









          Rafael Gonzalez Lopez

          652112




          652112




















              up vote
              2
              down vote













              Let $fracmathrmdmathrmdz=tfrac12(fracmathrmdmathrmdx-mathrmifracmathrmdmathrmdy)$ and $fracmathrmdmathrmdoverlinez=tfrac12(fracmathrmdmathrmdx+mathrmifracmathrmdmathrmdy)$ as usual. Then $$fracmathrmd^2mathrmdz , mathrmdoverlinez = frac14left(fracmathrmd^2mathrmdx^2+ fracmathrmd^2mathrmdy^2right)$$ and $f$ is holomorphic if $fracmathrmdfmathrmdoverlinez=0$ or anti-holomorphic if $fracmathrmdfmathrmdz=0$. Now under the given conditions $$0 = fracmathrmd^2 f^-1mathrmdz , mathrmdoverlinez = 2 f^-3 fracmathrmdfmathrmdz fracmathrmdfmathrmdoverlinez.$$






              share|cite|improve this answer



























                up vote
                2
                down vote













                Let $fracmathrmdmathrmdz=tfrac12(fracmathrmdmathrmdx-mathrmifracmathrmdmathrmdy)$ and $fracmathrmdmathrmdoverlinez=tfrac12(fracmathrmdmathrmdx+mathrmifracmathrmdmathrmdy)$ as usual. Then $$fracmathrmd^2mathrmdz , mathrmdoverlinez = frac14left(fracmathrmd^2mathrmdx^2+ fracmathrmd^2mathrmdy^2right)$$ and $f$ is holomorphic if $fracmathrmdfmathrmdoverlinez=0$ or anti-holomorphic if $fracmathrmdfmathrmdz=0$. Now under the given conditions $$0 = fracmathrmd^2 f^-1mathrmdz , mathrmdoverlinez = 2 f^-3 fracmathrmdfmathrmdz fracmathrmdfmathrmdoverlinez.$$






                share|cite|improve this answer

























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Let $fracmathrmdmathrmdz=tfrac12(fracmathrmdmathrmdx-mathrmifracmathrmdmathrmdy)$ and $fracmathrmdmathrmdoverlinez=tfrac12(fracmathrmdmathrmdx+mathrmifracmathrmdmathrmdy)$ as usual. Then $$fracmathrmd^2mathrmdz , mathrmdoverlinez = frac14left(fracmathrmd^2mathrmdx^2+ fracmathrmd^2mathrmdy^2right)$$ and $f$ is holomorphic if $fracmathrmdfmathrmdoverlinez=0$ or anti-holomorphic if $fracmathrmdfmathrmdz=0$. Now under the given conditions $$0 = fracmathrmd^2 f^-1mathrmdz , mathrmdoverlinez = 2 f^-3 fracmathrmdfmathrmdz fracmathrmdfmathrmdoverlinez.$$






                  share|cite|improve this answer















                  Let $fracmathrmdmathrmdz=tfrac12(fracmathrmdmathrmdx-mathrmifracmathrmdmathrmdy)$ and $fracmathrmdmathrmdoverlinez=tfrac12(fracmathrmdmathrmdx+mathrmifracmathrmdmathrmdy)$ as usual. Then $$fracmathrmd^2mathrmdz , mathrmdoverlinez = frac14left(fracmathrmd^2mathrmdx^2+ fracmathrmd^2mathrmdy^2right)$$ and $f$ is holomorphic if $fracmathrmdfmathrmdoverlinez=0$ or anti-holomorphic if $fracmathrmdfmathrmdz=0$. Now under the given conditions $$0 = fracmathrmd^2 f^-1mathrmdz , mathrmdoverlinez = 2 f^-3 fracmathrmdfmathrmdz fracmathrmdfmathrmdoverlinez.$$







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jul 20 at 17:36


























                  answered Jul 20 at 17:30









                  WimC

                  23.7k22860




                  23.7k22860






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857840%2fif-f-and-1-f-are-harmonic-then-f-is-holomorphic-or-antiholomorphic%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?

                      What is the equation of a 3D cone with generalised tilt?