Comparing Problem 1 and 2 determine which problem produce sparsest solution for W?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Problem1:



min $|W^l2 |_1$
s.t $|A^K_i w_i - b^K_i|_2 leq varepsilon, text for i=1,2, ldots, gamma$
$;|A^L_i w_i| leq rho times 1^L$



where $A^K_i in mathbbC^K times N$, $A^L_i in mathbbC^L times N$, $W in mathbbC^Ntimes gamma$ and $W = [w_1 w_2 ldots w_gamma]$ and $K+L=M$.



Problem2:
min $ |AW-B|_F + lambda |W^l2|_1$



where $A in mathbbC^M times N$, $B in mathbbC^M times gamma$ and $lambda$ is the regularization parameter.



Thank you in advance.







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    Problem1:



    min $|W^l2 |_1$
    s.t $|A^K_i w_i - b^K_i|_2 leq varepsilon, text for i=1,2, ldots, gamma$
    $;|A^L_i w_i| leq rho times 1^L$



    where $A^K_i in mathbbC^K times N$, $A^L_i in mathbbC^L times N$, $W in mathbbC^Ntimes gamma$ and $W = [w_1 w_2 ldots w_gamma]$ and $K+L=M$.



    Problem2:
    min $ |AW-B|_F + lambda |W^l2|_1$



    where $A in mathbbC^M times N$, $B in mathbbC^M times gamma$ and $lambda$ is the regularization parameter.



    Thank you in advance.







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Problem1:



      min $|W^l2 |_1$
      s.t $|A^K_i w_i - b^K_i|_2 leq varepsilon, text for i=1,2, ldots, gamma$
      $;|A^L_i w_i| leq rho times 1^L$



      where $A^K_i in mathbbC^K times N$, $A^L_i in mathbbC^L times N$, $W in mathbbC^Ntimes gamma$ and $W = [w_1 w_2 ldots w_gamma]$ and $K+L=M$.



      Problem2:
      min $ |AW-B|_F + lambda |W^l2|_1$



      where $A in mathbbC^M times N$, $B in mathbbC^M times gamma$ and $lambda$ is the regularization parameter.



      Thank you in advance.







      share|cite|improve this question













      Problem1:



      min $|W^l2 |_1$
      s.t $|A^K_i w_i - b^K_i|_2 leq varepsilon, text for i=1,2, ldots, gamma$
      $;|A^L_i w_i| leq rho times 1^L$



      where $A^K_i in mathbbC^K times N$, $A^L_i in mathbbC^L times N$, $W in mathbbC^Ntimes gamma$ and $W = [w_1 w_2 ldots w_gamma]$ and $K+L=M$.



      Problem2:
      min $ |AW-B|_F + lambda |W^l2|_1$



      where $A in mathbbC^M times N$, $B in mathbbC^M times gamma$ and $lambda$ is the regularization parameter.



      Thank you in advance.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 20 at 17:36









      Michael Hardy

      204k23186462




      204k23186462









      asked Jul 20 at 15:58









      Arun Goel

      11




      11

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857790%2fcomparing-problem-1-and-2-determine-which-problem-produce-sparsest-solution-for%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857790%2fcomparing-problem-1-and-2-determine-which-problem-produce-sparsest-solution-for%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?