What's the series of $sum_ngeqslant1 dfraczeta(2n)n2^2n$.
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
I know with the formula
$$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
may I find the following relation used here
$$
sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
$$
hardly, since I have
$$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
and after integration set $x=dfrac14$, but it seems so hard.
Any suggestion, thanks in advanced!
integration zeta-functions
add a comment |Â
up vote
5
down vote
favorite
I know with the formula
$$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
may I find the following relation used here
$$
sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
$$
hardly, since I have
$$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
and after integration set $x=dfrac14$, but it seems so hard.
Any suggestion, thanks in advanced!
integration zeta-functions
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
I know with the formula
$$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
may I find the following relation used here
$$
sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
$$
hardly, since I have
$$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
and after integration set $x=dfrac14$, but it seems so hard.
Any suggestion, thanks in advanced!
integration zeta-functions
I know with the formula
$$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
may I find the following relation used here
$$
sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
$$
hardly, since I have
$$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
and after integration set $x=dfrac14$, but it seems so hard.
Any suggestion, thanks in advanced!
integration zeta-functions
edited Jul 20 at 13:54
asked Jul 20 at 12:57
Nosrati
19.5k41544
19.5k41544
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
5
down vote
accepted
Using your formula we have
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
Now let $pi x = t$ and integrate:
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$
Alternatively you can of course compute the series directly using Wallis' product:
beginalign
sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
&= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
endalign
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
add a comment |Â
up vote
4
down vote
Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.
2
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Using your formula we have
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
Now let $pi x = t$ and integrate:
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$
Alternatively you can of course compute the series directly using Wallis' product:
beginalign
sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
&= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
endalign
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
add a comment |Â
up vote
5
down vote
accepted
Using your formula we have
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
Now let $pi x = t$ and integrate:
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$
Alternatively you can of course compute the series directly using Wallis' product:
beginalign
sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
&= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
endalign
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Using your formula we have
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
Now let $pi x = t$ and integrate:
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$
Alternatively you can of course compute the series directly using Wallis' product:
beginalign
sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
&= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
endalign
Using your formula we have
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
Now let $pi x = t$ and integrate:
$$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$
Alternatively you can of course compute the series directly using Wallis' product:
beginalign
sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
&= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
endalign
edited Jul 20 at 13:29
answered Jul 20 at 13:22
ComplexYetTrivial
2,607624
2,607624
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
add a comment |Â
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
Perfect (+1) $$
â Szeto
Jul 20 at 13:29
add a comment |Â
up vote
4
down vote
Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.
2
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
add a comment |Â
up vote
4
down vote
Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.
2
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.
Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.
answered Jul 20 at 14:24
Marco Cantarini
28.7k23574
28.7k23574
2
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
add a comment |Â
2
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
2
2
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
Frullani Rules! (+1)
â Mark Viola
Jul 20 at 14:51
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857613%2fwhats-the-series-of-sum-n-geqslant1-dfrac-zeta2nn22n%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password