What's the series of $sum_ngeqslant1 dfraczeta(2n)n2^2n$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite
2












I know with the formula
$$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
may I find the following relation used here




$$
sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
$$




hardly, since I have
$$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
and after integration set $x=dfrac14$, but it seems so hard.



Any suggestion, thanks in advanced!







share|cite|improve this question

























    up vote
    5
    down vote

    favorite
    2












    I know with the formula
    $$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
    may I find the following relation used here




    $$
    sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
    $$




    hardly, since I have
    $$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
    and after integration set $x=dfrac14$, but it seems so hard.



    Any suggestion, thanks in advanced!







    share|cite|improve this question























      up vote
      5
      down vote

      favorite
      2









      up vote
      5
      down vote

      favorite
      2






      2





      I know with the formula
      $$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
      may I find the following relation used here




      $$
      sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
      $$




      hardly, since I have
      $$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
      and after integration set $x=dfrac14$, but it seems so hard.



      Any suggestion, thanks in advanced!







      share|cite|improve this question













      I know with the formula
      $$1-sum_ngeq 12zeta(2n),x^2n=pi xcot(pi x)$$
      may I find the following relation used here




      $$
      sum_ngeqslant1 dfraczeta(2n)n2^2n=colorbluelndfracpi2
      $$




      hardly, since I have
      $$intsum_ngeq 1zeta(2n),x^n-1dx=intleft(dfrac12x^n+1-dfracpi2 dfraccot(pi x)x^nright)dx$$
      and after integration set $x=dfrac14$, but it seems so hard.



      Any suggestion, thanks in advanced!









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 20 at 13:54
























      asked Jul 20 at 12:57









      Nosrati

      19.5k41544




      19.5k41544




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          5
          down vote



          accepted










          Using your formula we have
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
          Now let $pi x = t$ and integrate:
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$



          Alternatively you can of course compute the series directly using Wallis' product:
          beginalign
          sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
          &= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
          endalign






          share|cite|improve this answer























          • Perfect (+1) $$
            – Szeto
            Jul 20 at 13:29

















          up vote
          4
          down vote













          Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.






          share|cite|improve this answer

















          • 2




            Frullani Rules! (+1)
            – Mark Viola
            Jul 20 at 14:51










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857613%2fwhats-the-series-of-sum-n-geqslant1-dfrac-zeta2nn22n%23new-answer', 'question_page');

          );

          Post as a guest






























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          5
          down vote



          accepted










          Using your formula we have
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
          Now let $pi x = t$ and integrate:
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$



          Alternatively you can of course compute the series directly using Wallis' product:
          beginalign
          sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
          &= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
          endalign






          share|cite|improve this answer























          • Perfect (+1) $$
            – Szeto
            Jul 20 at 13:29














          up vote
          5
          down vote



          accepted










          Using your formula we have
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
          Now let $pi x = t$ and integrate:
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$



          Alternatively you can of course compute the series directly using Wallis' product:
          beginalign
          sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
          &= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
          endalign






          share|cite|improve this answer























          • Perfect (+1) $$
            – Szeto
            Jul 20 at 13:29












          up vote
          5
          down vote



          accepted







          up vote
          5
          down vote



          accepted






          Using your formula we have
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
          Now let $pi x = t$ and integrate:
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$



          Alternatively you can of course compute the series directly using Wallis' product:
          beginalign
          sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
          &= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
          endalign






          share|cite|improve this answer















          Using your formula we have
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = int limits_0^1/2 sum limits_n=1^infty 2 zeta(2n) x^2n-1 , mathrmd x = int limits_0^1/2 frac1-pi x cot(pi x)x , mathrmd x , .$$
          Now let $pi x = t$ and integrate:
          $$ sum limits_n=1^infty fraczeta(2n)n 2^2n = lim_varepsilon searrow 0 int limits_varepsilon^pi/2 left[frac1t - cot(t)right] , mathrmd t = lim_varepsilon searrow 0 left[lnleft(fractsin(t)right)right]_varepsilon^pi /2 = ln left(fracpi2right) , .$$



          Alternatively you can of course compute the series directly using Wallis' product:
          beginalign
          sum limits_n=1^infty fraczeta(2n)n 2^2n &= sum limits_n=1^infty frac1n 2^2n sum limits_k=1^infty frac1k^2n = sum limits_k=1^infty sum limits_n=1^infty frac1n (4k^2)^n = sum limits_k=1^infty - lnleft(1-frac14k^2right) \
          &= sum limits_k=1^infty ln left(frac4k^24k^2 -1right) = ln left(prod limits_k=1^infty frac4k^24k^2 -1 right) = ln left(fracpi2right) , .
          endalign







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 20 at 13:29


























          answered Jul 20 at 13:22









          ComplexYetTrivial

          2,607624




          2,607624











          • Perfect (+1) $$
            – Szeto
            Jul 20 at 13:29
















          • Perfect (+1) $$
            – Szeto
            Jul 20 at 13:29















          Perfect (+1) $$
          – Szeto
          Jul 20 at 13:29




          Perfect (+1) $$
          – Szeto
          Jul 20 at 13:29










          up vote
          4
          down vote













          Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.






          share|cite|improve this answer

















          • 2




            Frullani Rules! (+1)
            – Mark Viola
            Jul 20 at 14:51














          up vote
          4
          down vote













          Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.






          share|cite|improve this answer

















          • 2




            Frullani Rules! (+1)
            – Mark Viola
            Jul 20 at 14:51












          up vote
          4
          down vote










          up vote
          4
          down vote









          Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.






          share|cite|improve this answer













          Another (similar) approach, just for fun. From the integral representation of the Riemann Zeta function $$zetaleft(sright)=frac1Gammaleft(sright)int_0^inftyfracu^s-1e^u-1du,,mathrmReleft(sright)>1$$ we have $$S=sum_ngeq1fraczetaleft(2nright)n4^n=sum_ngeq1frac1n4^nleft(2n-1right)!int_0^inftyfracu^2n-1e^u-1du=int_0^inftyfrace^u/2+e^-u/2-2uleft(e^u-1right)du$$ where the exchange is justified by the dominated convergence theorem. Then, by the Frullani's theorem, we get $$S=sum_mgeq1left(int_0^inftyfrace^-uleft(m-1/2right)-e^-muudx+int_0^inftyfrace^-uleft(1/2+mright)-e^-muudxright)$$ $$=-sum_mgeq1logleft(1-frac14m^2right)$$ and so the claim by the Wallis product.







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 20 at 14:24









          Marco Cantarini

          28.7k23574




          28.7k23574







          • 2




            Frullani Rules! (+1)
            – Mark Viola
            Jul 20 at 14:51












          • 2




            Frullani Rules! (+1)
            – Mark Viola
            Jul 20 at 14:51







          2




          2




          Frullani Rules! (+1)
          – Mark Viola
          Jul 20 at 14:51




          Frullani Rules! (+1)
          – Mark Viola
          Jul 20 at 14:51












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857613%2fwhats-the-series-of-sum-n-geqslant1-dfrac-zeta2nn22n%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?