Calculation of the integral
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $M$ is a noncompact manifold.
Let $R=overlineB(x_0;rho)times [-tau_1,-tau_2]$. ($B(x_0;rho)$ is the ball of the radius $rho$ centered at $x_0$).
And $w$ satisfies $wgeq0, Lwgeq0$ ($L$ is the heat operator on $M$).
Let $psi$ is a function.
Assume that the following holds:
$frac12int!!!int_R psi^2 fracpartial w^2partial t+mid grad(w) mid ^2 dVdt leq 2 int !!!int_R mid grad(psi )mid^2w^2dVdt$ $cdots$(1).
Then
$int!!!int_R fracpartial (psi^2 w^2)partial t + mid grad(psi w) mid^2 dVdt leq c int!!!int_R psi fracpartial psipartial t + mid grad(psi) mid^2 w^2 dVdt$ $cdots$(2),
where c is some universal constant.
Why does the inequality (1) imply the inequality (2)?
I would appreciate it if you could answer this question.
integration inequality heat-equation
add a comment |Â
up vote
0
down vote
favorite
Let $M$ is a noncompact manifold.
Let $R=overlineB(x_0;rho)times [-tau_1,-tau_2]$. ($B(x_0;rho)$ is the ball of the radius $rho$ centered at $x_0$).
And $w$ satisfies $wgeq0, Lwgeq0$ ($L$ is the heat operator on $M$).
Let $psi$ is a function.
Assume that the following holds:
$frac12int!!!int_R psi^2 fracpartial w^2partial t+mid grad(w) mid ^2 dVdt leq 2 int !!!int_R mid grad(psi )mid^2w^2dVdt$ $cdots$(1).
Then
$int!!!int_R fracpartial (psi^2 w^2)partial t + mid grad(psi w) mid^2 dVdt leq c int!!!int_R psi fracpartial psipartial t + mid grad(psi) mid^2 w^2 dVdt$ $cdots$(2),
where c is some universal constant.
Why does the inequality (1) imply the inequality (2)?
I would appreciate it if you could answer this question.
integration inequality heat-equation
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $M$ is a noncompact manifold.
Let $R=overlineB(x_0;rho)times [-tau_1,-tau_2]$. ($B(x_0;rho)$ is the ball of the radius $rho$ centered at $x_0$).
And $w$ satisfies $wgeq0, Lwgeq0$ ($L$ is the heat operator on $M$).
Let $psi$ is a function.
Assume that the following holds:
$frac12int!!!int_R psi^2 fracpartial w^2partial t+mid grad(w) mid ^2 dVdt leq 2 int !!!int_R mid grad(psi )mid^2w^2dVdt$ $cdots$(1).
Then
$int!!!int_R fracpartial (psi^2 w^2)partial t + mid grad(psi w) mid^2 dVdt leq c int!!!int_R psi fracpartial psipartial t + mid grad(psi) mid^2 w^2 dVdt$ $cdots$(2),
where c is some universal constant.
Why does the inequality (1) imply the inequality (2)?
I would appreciate it if you could answer this question.
integration inequality heat-equation
Let $M$ is a noncompact manifold.
Let $R=overlineB(x_0;rho)times [-tau_1,-tau_2]$. ($B(x_0;rho)$ is the ball of the radius $rho$ centered at $x_0$).
And $w$ satisfies $wgeq0, Lwgeq0$ ($L$ is the heat operator on $M$).
Let $psi$ is a function.
Assume that the following holds:
$frac12int!!!int_R psi^2 fracpartial w^2partial t+mid grad(w) mid ^2 dVdt leq 2 int !!!int_R mid grad(psi )mid^2w^2dVdt$ $cdots$(1).
Then
$int!!!int_R fracpartial (psi^2 w^2)partial t + mid grad(psi w) mid^2 dVdt leq c int!!!int_R psi fracpartial psipartial t + mid grad(psi) mid^2 w^2 dVdt$ $cdots$(2),
where c is some universal constant.
Why does the inequality (1) imply the inequality (2)?
I would appreciate it if you could answer this question.
integration inequality heat-equation
asked Jul 21 at 3:06
Manifolds
262
262
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858207%2fcalculation-of-the-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password