Determinant of nearly companion matrix

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












For the matrix
$$
A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&0&0&0&1&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$



I would like to compute the determinant (resp. characteristic polynomial).



The matrix looks nearly the same as the companion matrix (only the first and third row differ)



$$
B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&1&0&0&0&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$



for which it is known that the characteristic polynomial is given by
$$
t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
$$



My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.



(of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)







share|cite|improve this question























    up vote
    2
    down vote

    favorite












    For the matrix
    $$
    A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
    0&0&1&0&0&0&0&0&0&0&0&0&0\
    0&0&0&0&0&0&1&0&0&0&0&0&0\
    0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
    0&0&0&0&0&0&0&0&1&0&0&0&0\
    0&0&0&0&0&0&0&0&0&1&0&0&0\
    0&0&0&0&0&0&0&0&0&0&1&0&0\
    0&0&0&0&0&0&0&0&0&0&0&1&0\
    0&0&0&0&0&0&0&0&0&0&0&0&1\
    a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
    $$



    I would like to compute the determinant (resp. characteristic polynomial).



    The matrix looks nearly the same as the companion matrix (only the first and third row differ)



    $$
    B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
    0&0&1&0&0&0&0&0&0&0&0&0&0\
    0&0&0&1&0&0&0&0&0&0&0&0&0\
    0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
    0&0&0&0&0&0&0&0&1&0&0&0&0\
    0&0&0&0&0&0&0&0&0&1&0&0&0\
    0&0&0&0&0&0&0&0&0&0&1&0&0\
    0&0&0&0&0&0&0&0&0&0&0&1&0\
    0&0&0&0&0&0&0&0&0&0&0&0&1\
    a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
    $$



    for which it is known that the characteristic polynomial is given by
    $$
    t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
    $$



    My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.



    (of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)







    share|cite|improve this question





















      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      For the matrix
      $$
      A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
      0&0&1&0&0&0&0&0&0&0&0&0&0\
      0&0&0&0&0&0&1&0&0&0&0&0&0\
      0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
      0&0&0&0&0&0&0&0&1&0&0&0&0\
      0&0&0&0&0&0&0&0&0&1&0&0&0\
      0&0&0&0&0&0&0&0&0&0&1&0&0\
      0&0&0&0&0&0&0&0&0&0&0&1&0\
      0&0&0&0&0&0&0&0&0&0&0&0&1\
      a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
      $$



      I would like to compute the determinant (resp. characteristic polynomial).



      The matrix looks nearly the same as the companion matrix (only the first and third row differ)



      $$
      B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
      0&0&1&0&0&0&0&0&0&0&0&0&0\
      0&0&0&1&0&0&0&0&0&0&0&0&0\
      0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
      0&0&0&0&0&0&0&0&1&0&0&0&0\
      0&0&0&0&0&0&0&0&0&1&0&0&0\
      0&0&0&0&0&0&0&0&0&0&1&0&0\
      0&0&0&0&0&0&0&0&0&0&0&1&0\
      0&0&0&0&0&0&0&0&0&0&0&0&1\
      a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
      $$



      for which it is known that the characteristic polynomial is given by
      $$
      t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
      $$



      My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.



      (of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)







      share|cite|improve this question











      For the matrix
      $$
      A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
      0&0&1&0&0&0&0&0&0&0&0&0&0\
      0&0&0&0&0&0&1&0&0&0&0&0&0\
      0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
      0&0&0&0&0&0&0&0&1&0&0&0&0\
      0&0&0&0&0&0&0&0&0&1&0&0&0\
      0&0&0&0&0&0&0&0&0&0&1&0&0\
      0&0&0&0&0&0&0&0&0&0&0&1&0\
      0&0&0&0&0&0&0&0&0&0&0&0&1\
      a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
      $$



      I would like to compute the determinant (resp. characteristic polynomial).



      The matrix looks nearly the same as the companion matrix (only the first and third row differ)



      $$
      B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
      0&0&1&0&0&0&0&0&0&0&0&0&0\
      0&0&0&1&0&0&0&0&0&0&0&0&0\
      0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
      0&0&0&0&0&0&0&0&1&0&0&0&0\
      0&0&0&0&0&0&0&0&0&1&0&0&0\
      0&0&0&0&0&0&0&0&0&0&1&0&0\
      0&0&0&0&0&0&0&0&0&0&0&1&0\
      0&0&0&0&0&0&0&0&0&0&0&0&1\
      a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
      $$



      for which it is known that the characteristic polynomial is given by
      $$
      t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
      $$



      My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.



      (of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 20 at 20:06









      Rhjg

      258214




      258214




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          They are similar and different at the same time.



          I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.



          Anyway, if you note the common part:



          $G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$



          Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$



          Eventually you could rewrite:



          $P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857982%2fdeterminant-of-nearly-companion-matrix%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            They are similar and different at the same time.



            I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.



            Anyway, if you note the common part:



            $G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$



            Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$



            Eventually you could rewrite:



            $P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              They are similar and different at the same time.



              I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.



              Anyway, if you note the common part:



              $G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$



              Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$



              Eventually you could rewrite:



              $P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                They are similar and different at the same time.



                I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.



                Anyway, if you note the common part:



                $G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$



                Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$



                Eventually you could rewrite:



                $P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$






                share|cite|improve this answer













                They are similar and different at the same time.



                I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.



                Anyway, if you note the common part:



                $G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$



                Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$



                Eventually you could rewrite:



                $P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 20 at 21:07









                zwim

                11k627




                11k627






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857982%2fdeterminant-of-nearly-companion-matrix%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?