Determinant of nearly companion matrix
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
For the matrix
$$
A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&0&0&0&1&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
I would like to compute the determinant (resp. characteristic polynomial).
The matrix looks nearly the same as the companion matrix (only the first and third row differ)
$$
B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&1&0&0&0&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
for which it is known that the characteristic polynomial is given by
$$
t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
$$
My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.
(of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)
matrices determinant
add a comment |Â
up vote
2
down vote
favorite
For the matrix
$$
A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&0&0&0&1&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
I would like to compute the determinant (resp. characteristic polynomial).
The matrix looks nearly the same as the companion matrix (only the first and third row differ)
$$
B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&1&0&0&0&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
for which it is known that the characteristic polynomial is given by
$$
t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
$$
My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.
(of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)
matrices determinant
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
For the matrix
$$
A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&0&0&0&1&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
I would like to compute the determinant (resp. characteristic polynomial).
The matrix looks nearly the same as the companion matrix (only the first and third row differ)
$$
B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&1&0&0&0&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
for which it is known that the characteristic polynomial is given by
$$
t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
$$
My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.
(of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)
matrices determinant
For the matrix
$$
A=beginpmatrix0 &0 &0 &0 &0 & 0&1&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&0&0&0&1&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
I would like to compute the determinant (resp. characteristic polynomial).
The matrix looks nearly the same as the companion matrix (only the first and third row differ)
$$
B=beginpmatrix0 &1 &0 &0 &0 & 0&0&0&0&0&0&0&0\
0&0&1&0&0&0&0&0&0&0&0&0&0\
0&0&0&1&0&0&0&0&0&0&0&0&0\
0&0&0&0&1&0&0&0&0&0&0&0&0\0&0&0&0&0&1&0&0&0&0&0&0&0\0&0&0&0&0&0&1&0&0&0&0&0&0\0&0&0&0&0&0&0&1&0&0&0&0&0\
0&0&0&0&0&0&0&0&1&0&0&0&0\
0&0&0&0&0&0&0&0&0&1&0&0&0\
0&0&0&0&0&0&0&0&0&0&1&0&0\
0&0&0&0&0&0&0&0&0&0&0&1&0\
0&0&0&0&0&0&0&0&0&0&0&0&1\
a&b&c&d&e&f&g&h&i&j&k&l&mendpmatrix
$$
for which it is known that the characteristic polynomial is given by
$$
t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3-ct^2-bt -a
$$
My question is if I can deduce the characteristic polynomial of matrix $A$ from that of $B$.
(of course i could simply compute the determinant of A by, e.g. gauss. but i am interested to know whether it suffices to know the determinant of B)
matrices determinant
asked Jul 20 at 20:06
Rhjg
258214
258214
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
They are similar and different at the same time.
I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.
Anyway, if you note the common part:
$G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$
Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$
Eventually you could rewrite:
$P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
They are similar and different at the same time.
I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.
Anyway, if you note the common part:
$G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$
Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$
Eventually you could rewrite:
$P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$
add a comment |Â
up vote
1
down vote
accepted
They are similar and different at the same time.
I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.
Anyway, if you note the common part:
$G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$
Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$
Eventually you could rewrite:
$P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
They are similar and different at the same time.
I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.
Anyway, if you note the common part:
$G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$
Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$
Eventually you could rewrite:
$P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$
They are similar and different at the same time.
I don't know where you want to go from there, there are plenty of zeros in the matrices, so the characteristic polynomial is easy to calculate for both.
Anyway, if you note the common part:
$G(t)=t^13-mt^12-lt^11-kt^10-jt^9-it^8-ht^7-gt^6-ft^5-et^4-dt^3$
Then $begincasesP_A(t)=G(t)-(a+c)t^5-bt^4\ P_B(t)=G(t)-ct^2-bt-aendcases$
Eventually you could rewrite:
$P_A(a,b,c,d,e,f,g,h,i,j,k,l,m,t)=P_B(0,0,0,d,b+e,a+c+f,g,h,i,j,k,l,m,t)$
answered Jul 20 at 21:07


zwim
11k627
11k627
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857982%2fdeterminant-of-nearly-companion-matrix%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password