Differentiability of $L^p$-valued functions

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Let



  • $(Omega,mathcal A,mu)$ be a finite measure space

  • $X$ be a metric $mathbb R$-vector space

  • $hin X$

  • $Lambdasubseteq X$ be open

  • $Y$ be a $mathbb R$-Banach space

  • $pge1$

If $f:OmegatimesLambdatomathbb R$ with



  1. $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$

  2. $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$

  3. For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$

then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.





Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?




Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$




Can we say anything more?




(Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    1












    Let



    • $(Omega,mathcal A,mu)$ be a finite measure space

    • $X$ be a metric $mathbb R$-vector space

    • $hin X$

    • $Lambdasubseteq X$ be open

    • $Y$ be a $mathbb R$-Banach space

    • $pge1$

    If $f:OmegatimesLambdatomathbb R$ with



    1. $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$

    2. $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$

    3. For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$

    then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.





    Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?




    Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$




    Can we say anything more?




    (Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let



      • $(Omega,mathcal A,mu)$ be a finite measure space

      • $X$ be a metric $mathbb R$-vector space

      • $hin X$

      • $Lambdasubseteq X$ be open

      • $Y$ be a $mathbb R$-Banach space

      • $pge1$

      If $f:OmegatimesLambdatomathbb R$ with



      1. $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$

      2. $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$

      3. For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$

      then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.





      Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?




      Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$




      Can we say anything more?




      (Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)







      share|cite|improve this question











      Let



      • $(Omega,mathcal A,mu)$ be a finite measure space

      • $X$ be a metric $mathbb R$-vector space

      • $hin X$

      • $Lambdasubseteq X$ be open

      • $Y$ be a $mathbb R$-Banach space

      • $pge1$

      If $f:OmegatimesLambdatomathbb R$ with



      1. $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$

      2. $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$

      3. For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$

      then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.





      Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?




      Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$




      Can we say anything more?




      (Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Aug 5 at 22:08









      0xbadf00d

      2,04141028




      2,04141028

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873392%2fdifferentiability-of-lp-valued-functions%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873392%2fdifferentiability-of-lp-valued-functions%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?