Differentiability of $L^p$-valued functions
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let
- $(Omega,mathcal A,mu)$ be a finite measure space
- $X$ be a metric $mathbb R$-vector space
- $hin X$
- $Lambdasubseteq X$ be open
- $Y$ be a $mathbb R$-Banach space
- $pge1$
If $f:OmegatimesLambdatomathbb R$ with
- $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$
- $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$
- For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$
then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.
Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?
Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$
Can we say anything more?
(Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)
real-analysis measure-theory gateaux-derivative
add a comment |Â
up vote
0
down vote
favorite
Let
- $(Omega,mathcal A,mu)$ be a finite measure space
- $X$ be a metric $mathbb R$-vector space
- $hin X$
- $Lambdasubseteq X$ be open
- $Y$ be a $mathbb R$-Banach space
- $pge1$
If $f:OmegatimesLambdatomathbb R$ with
- $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$
- $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$
- For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$
then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.
Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?
Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$
Can we say anything more?
(Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)
real-analysis measure-theory gateaux-derivative
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let
- $(Omega,mathcal A,mu)$ be a finite measure space
- $X$ be a metric $mathbb R$-vector space
- $hin X$
- $Lambdasubseteq X$ be open
- $Y$ be a $mathbb R$-Banach space
- $pge1$
If $f:OmegatimesLambdatomathbb R$ with
- $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$
- $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$
- For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$
then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.
Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?
Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$
Can we say anything more?
(Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)
real-analysis measure-theory gateaux-derivative
Let
- $(Omega,mathcal A,mu)$ be a finite measure space
- $X$ be a metric $mathbb R$-vector space
- $hin X$
- $Lambdasubseteq X$ be open
- $Y$ be a $mathbb R$-Banach space
- $pge1$
If $f:OmegatimesLambdatomathbb R$ with
- $f(omega,;cdot;)$ is Gâteaux differentiable in direction $h$ for $mu$-almost all $omegainOmega$
- $f(;cdot;,x)$ is strongly $mathcal A$-measurable for all $xinLambda$
- For all compact $KsubseteqLambda$, there is a $thetainmathcal L^p(mu)$ with $$sup_xin Kleft|rm D_hf(;cdot;,x)right|_Yletheta;;;mutext-almost everywhere,$$ where $rm D_hf(omega,x)$ denotes the Gâteaux derivative of $f(omega,;cdot;)$ at $xinLambda$ in direction $h$ for all $omegainOmega$
then $$left|fracf(;cdot;,x+th)-f(;cdot;,x)t-rm D_hf(;cdot;,x)right|_L^p(mu;:Y)xrightarrowtto00tag2$$ and hence (if $f(;cdot;,x)inmathcal L^p(mu;Y)$ for all $xinLambda$) $$Lambdato L^p(mu;Y);,;;;xmapsto f(;cdot;,x)tag3$$ is Gâteaux differentiable in direction $h$.
Now consider the opposite case and assume that $g:Lambdatomathcal L^p(mu;Y)$ is Gâteaux differentiable in direction $h$. What can we say about the Gâteaux differentiability of $g(;cdot;)(omega)$ for $omegainOmega$?
Clearly, if $x_0inLambda$ and $(t_n)_ninmathbb Nsubseteqmathbb Rsetminusleft0right$ with $$x_n:=x_0+t_nhinLambda;;;textfor all ninmathbb N$$ and $t_nxrightarrowntoinfty0$, then $$left|fracg(x_n)-g(x_0)t_n-rm D_hg(x_0)right|_L^p(mu;:Y)xrightarrowntoinfty0tag4$$ and hence there is an increasing $(n_k)_kinmathbb Nsubseteqmathbb N$ with $$left|fracg(x_n_k)-g(x_0)t_n_k-rm D_hg(x_0)right|_Yxrightarrowktoinfty0;;;mutext-almost everywheretag5.$$
Can we say anything more?
(Note that there is a slight issue above: $rm D_hg(x_0)$ is only uniquely determined up to a $mu$-null set.)
real-analysis measure-theory gateaux-derivative
asked Aug 5 at 22:08
0xbadf00d
2,04141028
2,04141028
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873392%2fdifferentiability-of-lp-valued-functions%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password