How can the following coupled system of ODE be solved?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












The following system is a coupled ODEs that are dependant on each other.



$$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
$$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$



Where:



H(x) is the Unit Step Function







share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    The following system is a coupled ODEs that are dependant on each other.



    $$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
    $$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$



    Where:



    H(x) is the Unit Step Function







    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      The following system is a coupled ODEs that are dependant on each other.



      $$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
      $$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$



      Where:



      H(x) is the Unit Step Function







      share|cite|improve this question













      The following system is a coupled ODEs that are dependant on each other.



      $$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
      $$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$



      Where:



      H(x) is the Unit Step Function









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 6 at 1:27
























      asked Aug 6 at 1:04









      Refaat Galal

      93




      93




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          Let $begincases
          y_1(x) = Y(x)\
          y_2(x) = y_1'(x)\
          z_1(x) = Z(x)\
          z_2(x) = z_1'(x)
          endcases$, you may rewrite as,



          $begincases
          y_1(x)' = y_2(x)\
          y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
          z_1(x)' = z_2(x)\
          z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
          h_1(x) = H(x - A_3)\
          h_2(x) = H(x - B_3)
          endcases$



          and



          $
          left(
          beginarrayc
          y_1(x)'\
          y_2(x)'\
          z_1(x)'\
          z_2(x)'\
          h_1(x)\
          h_2(x)
          endarray
          right)
          =
          left(
          beginarraycccccc
          0 & 1 & 0 & 0 & 0 & 0\
          (A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
          0 & 0 & 0 & 1 & 0 & 0\
          B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
          0 & 0 & 0 & 0 & 1 & 0\
          0 & 0 & 0 & 0 & 0 & 1
          endarray
          right)
          left(
          beginarrayc
          Y(x)\
          Y'(x)\
          Z(x)\
          Z'(x)\
          H(x - A_3)\
          H(x - B_3)
          endarray
          right)
          $






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873495%2fhow-can-the-following-coupled-system-of-ode-be-solved%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            Let $begincases
            y_1(x) = Y(x)\
            y_2(x) = y_1'(x)\
            z_1(x) = Z(x)\
            z_2(x) = z_1'(x)
            endcases$, you may rewrite as,



            $begincases
            y_1(x)' = y_2(x)\
            y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
            z_1(x)' = z_2(x)\
            z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
            h_1(x) = H(x - A_3)\
            h_2(x) = H(x - B_3)
            endcases$



            and



            $
            left(
            beginarrayc
            y_1(x)'\
            y_2(x)'\
            z_1(x)'\
            z_2(x)'\
            h_1(x)\
            h_2(x)
            endarray
            right)
            =
            left(
            beginarraycccccc
            0 & 1 & 0 & 0 & 0 & 0\
            (A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
            0 & 0 & 0 & 1 & 0 & 0\
            B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
            0 & 0 & 0 & 0 & 1 & 0\
            0 & 0 & 0 & 0 & 0 & 1
            endarray
            right)
            left(
            beginarrayc
            Y(x)\
            Y'(x)\
            Z(x)\
            Z'(x)\
            H(x - A_3)\
            H(x - B_3)
            endarray
            right)
            $






            share|cite|improve this answer

























              up vote
              0
              down vote













              Let $begincases
              y_1(x) = Y(x)\
              y_2(x) = y_1'(x)\
              z_1(x) = Z(x)\
              z_2(x) = z_1'(x)
              endcases$, you may rewrite as,



              $begincases
              y_1(x)' = y_2(x)\
              y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
              z_1(x)' = z_2(x)\
              z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
              h_1(x) = H(x - A_3)\
              h_2(x) = H(x - B_3)
              endcases$



              and



              $
              left(
              beginarrayc
              y_1(x)'\
              y_2(x)'\
              z_1(x)'\
              z_2(x)'\
              h_1(x)\
              h_2(x)
              endarray
              right)
              =
              left(
              beginarraycccccc
              0 & 1 & 0 & 0 & 0 & 0\
              (A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
              0 & 0 & 0 & 1 & 0 & 0\
              B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
              0 & 0 & 0 & 0 & 1 & 0\
              0 & 0 & 0 & 0 & 0 & 1
              endarray
              right)
              left(
              beginarrayc
              Y(x)\
              Y'(x)\
              Z(x)\
              Z'(x)\
              H(x - A_3)\
              H(x - B_3)
              endarray
              right)
              $






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                Let $begincases
                y_1(x) = Y(x)\
                y_2(x) = y_1'(x)\
                z_1(x) = Z(x)\
                z_2(x) = z_1'(x)
                endcases$, you may rewrite as,



                $begincases
                y_1(x)' = y_2(x)\
                y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
                z_1(x)' = z_2(x)\
                z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
                h_1(x) = H(x - A_3)\
                h_2(x) = H(x - B_3)
                endcases$



                and



                $
                left(
                beginarrayc
                y_1(x)'\
                y_2(x)'\
                z_1(x)'\
                z_2(x)'\
                h_1(x)\
                h_2(x)
                endarray
                right)
                =
                left(
                beginarraycccccc
                0 & 1 & 0 & 0 & 0 & 0\
                (A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
                0 & 0 & 0 & 1 & 0 & 0\
                B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
                0 & 0 & 0 & 0 & 1 & 0\
                0 & 0 & 0 & 0 & 0 & 1
                endarray
                right)
                left(
                beginarrayc
                Y(x)\
                Y'(x)\
                Z(x)\
                Z'(x)\
                H(x - A_3)\
                H(x - B_3)
                endarray
                right)
                $






                share|cite|improve this answer













                Let $begincases
                y_1(x) = Y(x)\
                y_2(x) = y_1'(x)\
                z_1(x) = Z(x)\
                z_2(x) = z_1'(x)
                endcases$, you may rewrite as,



                $begincases
                y_1(x)' = y_2(x)\
                y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
                z_1(x)' = z_2(x)\
                z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
                h_1(x) = H(x - A_3)\
                h_2(x) = H(x - B_3)
                endcases$



                and



                $
                left(
                beginarrayc
                y_1(x)'\
                y_2(x)'\
                z_1(x)'\
                z_2(x)'\
                h_1(x)\
                h_2(x)
                endarray
                right)
                =
                left(
                beginarraycccccc
                0 & 1 & 0 & 0 & 0 & 0\
                (A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
                0 & 0 & 0 & 1 & 0 & 0\
                B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
                0 & 0 & 0 & 0 & 1 & 0\
                0 & 0 & 0 & 0 & 0 & 1
                endarray
                right)
                left(
                beginarrayc
                Y(x)\
                Y'(x)\
                Z(x)\
                Z'(x)\
                H(x - A_3)\
                H(x - B_3)
                endarray
                right)
                $







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Aug 6 at 7:07









                GinoCHJ

                794




                794






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873495%2fhow-can-the-following-coupled-system-of-ode-be-solved%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?