How can the following coupled system of ODE be solved?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
The following system is a coupled ODEs that are dependant on each other.
$$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
$$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$
Where:
H(x) is the Unit Step Function
differential-equations
add a comment |Â
up vote
1
down vote
favorite
The following system is a coupled ODEs that are dependant on each other.
$$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
$$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$
Where:
H(x) is the Unit Step Function
differential-equations
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The following system is a coupled ODEs that are dependant on each other.
$$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
$$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$
Where:
H(x) is the Unit Step Function
differential-equations
The following system is a coupled ODEs that are dependant on each other.
$$ Y''(x)+A_1 (Y(x) - Z(x)) = A_2 Y(x) - H(x -A_3)$$
$$ Z''(x)+B_1 (Z(x) - Y(x)) = B_2 Z(x) - H(x -B_3)$$
Where:
H(x) is the Unit Step Function
differential-equations
edited Aug 6 at 1:27
asked Aug 6 at 1:04
Refaat Galal
93
93
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Let $begincases
y_1(x) = Y(x)\
y_2(x) = y_1'(x)\
z_1(x) = Z(x)\
z_2(x) = z_1'(x)
endcases$, you may rewrite as,
$begincases
y_1(x)' = y_2(x)\
y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
z_1(x)' = z_2(x)\
z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
h_1(x) = H(x - A_3)\
h_2(x) = H(x - B_3)
endcases$
and
$
left(
beginarrayc
y_1(x)'\
y_2(x)'\
z_1(x)'\
z_2(x)'\
h_1(x)\
h_2(x)
endarray
right)
=
left(
beginarraycccccc
0 & 1 & 0 & 0 & 0 & 0\
(A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
0 & 0 & 0 & 1 & 0 & 0\
B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
0 & 0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 0 & 1
endarray
right)
left(
beginarrayc
Y(x)\
Y'(x)\
Z(x)\
Z'(x)\
H(x - A_3)\
H(x - B_3)
endarray
right)
$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Let $begincases
y_1(x) = Y(x)\
y_2(x) = y_1'(x)\
z_1(x) = Z(x)\
z_2(x) = z_1'(x)
endcases$, you may rewrite as,
$begincases
y_1(x)' = y_2(x)\
y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
z_1(x)' = z_2(x)\
z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
h_1(x) = H(x - A_3)\
h_2(x) = H(x - B_3)
endcases$
and
$
left(
beginarrayc
y_1(x)'\
y_2(x)'\
z_1(x)'\
z_2(x)'\
h_1(x)\
h_2(x)
endarray
right)
=
left(
beginarraycccccc
0 & 1 & 0 & 0 & 0 & 0\
(A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
0 & 0 & 0 & 1 & 0 & 0\
B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
0 & 0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 0 & 1
endarray
right)
left(
beginarrayc
Y(x)\
Y'(x)\
Z(x)\
Z'(x)\
H(x - A_3)\
H(x - B_3)
endarray
right)
$
add a comment |Â
up vote
0
down vote
Let $begincases
y_1(x) = Y(x)\
y_2(x) = y_1'(x)\
z_1(x) = Z(x)\
z_2(x) = z_1'(x)
endcases$, you may rewrite as,
$begincases
y_1(x)' = y_2(x)\
y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
z_1(x)' = z_2(x)\
z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
h_1(x) = H(x - A_3)\
h_2(x) = H(x - B_3)
endcases$
and
$
left(
beginarrayc
y_1(x)'\
y_2(x)'\
z_1(x)'\
z_2(x)'\
h_1(x)\
h_2(x)
endarray
right)
=
left(
beginarraycccccc
0 & 1 & 0 & 0 & 0 & 0\
(A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
0 & 0 & 0 & 1 & 0 & 0\
B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
0 & 0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 0 & 1
endarray
right)
left(
beginarrayc
Y(x)\
Y'(x)\
Z(x)\
Z'(x)\
H(x - A_3)\
H(x - B_3)
endarray
right)
$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $begincases
y_1(x) = Y(x)\
y_2(x) = y_1'(x)\
z_1(x) = Z(x)\
z_2(x) = z_1'(x)
endcases$, you may rewrite as,
$begincases
y_1(x)' = y_2(x)\
y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
z_1(x)' = z_2(x)\
z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
h_1(x) = H(x - A_3)\
h_2(x) = H(x - B_3)
endcases$
and
$
left(
beginarrayc
y_1(x)'\
y_2(x)'\
z_1(x)'\
z_2(x)'\
h_1(x)\
h_2(x)
endarray
right)
=
left(
beginarraycccccc
0 & 1 & 0 & 0 & 0 & 0\
(A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
0 & 0 & 0 & 1 & 0 & 0\
B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
0 & 0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 0 & 1
endarray
right)
left(
beginarrayc
Y(x)\
Y'(x)\
Z(x)\
Z'(x)\
H(x - A_3)\
H(x - B_3)
endarray
right)
$
Let $begincases
y_1(x) = Y(x)\
y_2(x) = y_1'(x)\
z_1(x) = Z(x)\
z_2(x) = z_1'(x)
endcases$, you may rewrite as,
$begincases
y_1(x)' = y_2(x)\
y_2(x)' = (A_2 - A_1)y_1(x) + A_1 z_1(x) - h_1(x)\
z_1(x)' = z_2(x)\
z_2(x)' = (B_2-B_1)z_1(x) + B_1 y_1(x)) + z_1(x) - h_2(x)\
h_1(x) = H(x - A_3)\
h_2(x) = H(x - B_3)
endcases$
and
$
left(
beginarrayc
y_1(x)'\
y_2(x)'\
z_1(x)'\
z_2(x)'\
h_1(x)\
h_2(x)
endarray
right)
=
left(
beginarraycccccc
0 & 1 & 0 & 0 & 0 & 0\
(A_2 - A_1)& 0 & A_1 & 0 & -1 & 0 \
0 & 0 & 0 & 1 & 0 & 0\
B_1 & 0 & (B_2-B_1) & 0 & 0 &-1\
0 & 0 & 0 & 0 & 1 & 0\
0 & 0 & 0 & 0 & 0 & 1
endarray
right)
left(
beginarrayc
Y(x)\
Y'(x)\
Z(x)\
Z'(x)\
H(x - A_3)\
H(x - B_3)
endarray
right)
$
answered Aug 6 at 7:07
GinoCHJ
794
794
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873495%2fhow-can-the-following-coupled-system-of-ode-be-solved%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password