Is this a Viable Strategy to Prove any Polynomial Limit?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












  1. Find $Q(x)=|f(x)-L|div|x-c|$


  2. Assume $|x-c|<delta$, so that
    $$|x-c| cdot Q(x)<delta cdot Q(x)$$


  3. $Q(x)$ is of the form, $ax^n+bx^n-1+dx^n-2+ ...$, so, applying the Triangle Inequality,
    $$delta cdot Q(x) = delta cdot (ax^n+bx^n-1+dx^n-2+ ...) le delta cdot (|a||x|^n+|b||x|^n-1+|d||x|^n-2+ ...)$$


  4. Assume $|x-c|<1$, so that
    $$-1<x-c<1 implies c-1<x<c+1 implies |x| < M = maxc-1$$

  5. Then,
    $$delta cdot (a|x|^n+b|x|^n-1+d|x|^n-2+ ...) lt delta cdot (aM^n+bM^n-1+dM^n-2+ ...) = delta cdot K$$

  6. Set $delta=max1, epsilon/K$.

Have I made any glaring mistakes here?







share|cite|improve this question



















  • What are you trying to prove?
    – Kavi Rama Murthy
    Aug 5 at 23:30










  • @KaviRamaMurthy $lim_x to cf(x) = L$
    – Vpie649
    Aug 5 at 23:37







  • 1




    You have not made any mistake.
    – Kavi Rama Murthy
    Aug 5 at 23:40














up vote
0
down vote

favorite












  1. Find $Q(x)=|f(x)-L|div|x-c|$


  2. Assume $|x-c|<delta$, so that
    $$|x-c| cdot Q(x)<delta cdot Q(x)$$


  3. $Q(x)$ is of the form, $ax^n+bx^n-1+dx^n-2+ ...$, so, applying the Triangle Inequality,
    $$delta cdot Q(x) = delta cdot (ax^n+bx^n-1+dx^n-2+ ...) le delta cdot (|a||x|^n+|b||x|^n-1+|d||x|^n-2+ ...)$$


  4. Assume $|x-c|<1$, so that
    $$-1<x-c<1 implies c-1<x<c+1 implies |x| < M = maxc-1$$

  5. Then,
    $$delta cdot (a|x|^n+b|x|^n-1+d|x|^n-2+ ...) lt delta cdot (aM^n+bM^n-1+dM^n-2+ ...) = delta cdot K$$

  6. Set $delta=max1, epsilon/K$.

Have I made any glaring mistakes here?







share|cite|improve this question



















  • What are you trying to prove?
    – Kavi Rama Murthy
    Aug 5 at 23:30










  • @KaviRamaMurthy $lim_x to cf(x) = L$
    – Vpie649
    Aug 5 at 23:37







  • 1




    You have not made any mistake.
    – Kavi Rama Murthy
    Aug 5 at 23:40












up vote
0
down vote

favorite









up vote
0
down vote

favorite











  1. Find $Q(x)=|f(x)-L|div|x-c|$


  2. Assume $|x-c|<delta$, so that
    $$|x-c| cdot Q(x)<delta cdot Q(x)$$


  3. $Q(x)$ is of the form, $ax^n+bx^n-1+dx^n-2+ ...$, so, applying the Triangle Inequality,
    $$delta cdot Q(x) = delta cdot (ax^n+bx^n-1+dx^n-2+ ...) le delta cdot (|a||x|^n+|b||x|^n-1+|d||x|^n-2+ ...)$$


  4. Assume $|x-c|<1$, so that
    $$-1<x-c<1 implies c-1<x<c+1 implies |x| < M = maxc-1$$

  5. Then,
    $$delta cdot (a|x|^n+b|x|^n-1+d|x|^n-2+ ...) lt delta cdot (aM^n+bM^n-1+dM^n-2+ ...) = delta cdot K$$

  6. Set $delta=max1, epsilon/K$.

Have I made any glaring mistakes here?







share|cite|improve this question











  1. Find $Q(x)=|f(x)-L|div|x-c|$


  2. Assume $|x-c|<delta$, so that
    $$|x-c| cdot Q(x)<delta cdot Q(x)$$


  3. $Q(x)$ is of the form, $ax^n+bx^n-1+dx^n-2+ ...$, so, applying the Triangle Inequality,
    $$delta cdot Q(x) = delta cdot (ax^n+bx^n-1+dx^n-2+ ...) le delta cdot (|a||x|^n+|b||x|^n-1+|d||x|^n-2+ ...)$$


  4. Assume $|x-c|<1$, so that
    $$-1<x-c<1 implies c-1<x<c+1 implies |x| < M = maxc-1$$

  5. Then,
    $$delta cdot (a|x|^n+b|x|^n-1+d|x|^n-2+ ...) lt delta cdot (aM^n+bM^n-1+dM^n-2+ ...) = delta cdot K$$

  6. Set $delta=max1, epsilon/K$.

Have I made any glaring mistakes here?









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Aug 5 at 22:57









Vpie649

915




915











  • What are you trying to prove?
    – Kavi Rama Murthy
    Aug 5 at 23:30










  • @KaviRamaMurthy $lim_x to cf(x) = L$
    – Vpie649
    Aug 5 at 23:37







  • 1




    You have not made any mistake.
    – Kavi Rama Murthy
    Aug 5 at 23:40
















  • What are you trying to prove?
    – Kavi Rama Murthy
    Aug 5 at 23:30










  • @KaviRamaMurthy $lim_x to cf(x) = L$
    – Vpie649
    Aug 5 at 23:37







  • 1




    You have not made any mistake.
    – Kavi Rama Murthy
    Aug 5 at 23:40















What are you trying to prove?
– Kavi Rama Murthy
Aug 5 at 23:30




What are you trying to prove?
– Kavi Rama Murthy
Aug 5 at 23:30












@KaviRamaMurthy $lim_x to cf(x) = L$
– Vpie649
Aug 5 at 23:37





@KaviRamaMurthy $lim_x to cf(x) = L$
– Vpie649
Aug 5 at 23:37





1




1




You have not made any mistake.
– Kavi Rama Murthy
Aug 5 at 23:40




You have not made any mistake.
– Kavi Rama Murthy
Aug 5 at 23:40















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873407%2fis-this-a-viable-strategy-to-prove-any-polynomial-limit%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873407%2fis-this-a-viable-strategy-to-prove-any-polynomial-limit%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?