Evaluate this integral: $int_y_min^infty (1 - ty)^1-alphay^-betady$, $alpha, beta in (2, 3)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












This problem is a different approach to my earlier question here



The core integral $int_y_min^infty (1 - ty)^1-alphay^-betady$ resembles the Beta function, but I am unable to get to the substitution to bring it to the correct form.



Applying integration by parts with the notation $int udv = uv - int vdu$, where $u = (1-ty)^1-alpha$ and $v = dfracy^-beta1-beta$ gets me back to an integral that is similar to the original.



Applying the transformation: $ty = z$, we get $int_ty_min^infty (1 - z)^1-alphaz^-betadz$, but I am unable to reduce this further with $alpha, beta in (2, 3)$



Any hints?







share|cite|improve this question



















  • Try $z=1/y$. $$
    – Szeto
    Jul 21 at 4:28










  • Mathematica gives: $-e^-i pi alpha t^beta -1 B_frac1t textym(alpha +beta -2,2-alpha )$.
    – David G. Stork
    Jul 21 at 4:51














up vote
0
down vote

favorite












This problem is a different approach to my earlier question here



The core integral $int_y_min^infty (1 - ty)^1-alphay^-betady$ resembles the Beta function, but I am unable to get to the substitution to bring it to the correct form.



Applying integration by parts with the notation $int udv = uv - int vdu$, where $u = (1-ty)^1-alpha$ and $v = dfracy^-beta1-beta$ gets me back to an integral that is similar to the original.



Applying the transformation: $ty = z$, we get $int_ty_min^infty (1 - z)^1-alphaz^-betadz$, but I am unable to reduce this further with $alpha, beta in (2, 3)$



Any hints?







share|cite|improve this question



















  • Try $z=1/y$. $$
    – Szeto
    Jul 21 at 4:28










  • Mathematica gives: $-e^-i pi alpha t^beta -1 B_frac1t textym(alpha +beta -2,2-alpha )$.
    – David G. Stork
    Jul 21 at 4:51












up vote
0
down vote

favorite









up vote
0
down vote

favorite











This problem is a different approach to my earlier question here



The core integral $int_y_min^infty (1 - ty)^1-alphay^-betady$ resembles the Beta function, but I am unable to get to the substitution to bring it to the correct form.



Applying integration by parts with the notation $int udv = uv - int vdu$, where $u = (1-ty)^1-alpha$ and $v = dfracy^-beta1-beta$ gets me back to an integral that is similar to the original.



Applying the transformation: $ty = z$, we get $int_ty_min^infty (1 - z)^1-alphaz^-betadz$, but I am unable to reduce this further with $alpha, beta in (2, 3)$



Any hints?







share|cite|improve this question











This problem is a different approach to my earlier question here



The core integral $int_y_min^infty (1 - ty)^1-alphay^-betady$ resembles the Beta function, but I am unable to get to the substitution to bring it to the correct form.



Applying integration by parts with the notation $int udv = uv - int vdu$, where $u = (1-ty)^1-alpha$ and $v = dfracy^-beta1-beta$ gets me back to an integral that is similar to the original.



Applying the transformation: $ty = z$, we get $int_ty_min^infty (1 - z)^1-alphaz^-betadz$, but I am unable to reduce this further with $alpha, beta in (2, 3)$



Any hints?









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 21 at 3:53









buzaku

3091212




3091212











  • Try $z=1/y$. $$
    – Szeto
    Jul 21 at 4:28










  • Mathematica gives: $-e^-i pi alpha t^beta -1 B_frac1t textym(alpha +beta -2,2-alpha )$.
    – David G. Stork
    Jul 21 at 4:51
















  • Try $z=1/y$. $$
    – Szeto
    Jul 21 at 4:28










  • Mathematica gives: $-e^-i pi alpha t^beta -1 B_frac1t textym(alpha +beta -2,2-alpha )$.
    – David G. Stork
    Jul 21 at 4:51















Try $z=1/y$. $$
– Szeto
Jul 21 at 4:28




Try $z=1/y$. $$
– Szeto
Jul 21 at 4:28












Mathematica gives: $-e^-i pi alpha t^beta -1 B_frac1t textym(alpha +beta -2,2-alpha )$.
– David G. Stork
Jul 21 at 4:51




Mathematica gives: $-e^-i pi alpha t^beta -1 B_frac1t textym(alpha +beta -2,2-alpha )$.
– David G. Stork
Jul 21 at 4:51










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










By the substitution $z=frac1ty$, we get (let $m=y_textmin$)
$$beginalign
int^1/mt_0(1-frac1z)^1-alphat^beta-1z^beta-2dz & =t^beta-1int^1/mt_0(frac1-zz)^1-alphaz^beta-2dz\
& =t^beta-1int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
& =t^beta-1int^1/mt_0(e^pi i(1-z))^1-alphaz^alpha+beta-3dz \
& =t^beta-1e^pi i(1-alpha)int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
& =-t^beta-1e^-pi ialphaB(frac1mt;alpha+beta-2,2-alpha)
endalign$$



which is the same as Mathematica's result.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858235%2fevaluate-this-integral-int-y-min-infty-1-ty1-alphay-betady%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    By the substitution $z=frac1ty$, we get (let $m=y_textmin$)
    $$beginalign
    int^1/mt_0(1-frac1z)^1-alphat^beta-1z^beta-2dz & =t^beta-1int^1/mt_0(frac1-zz)^1-alphaz^beta-2dz\
    & =t^beta-1int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
    & =t^beta-1int^1/mt_0(e^pi i(1-z))^1-alphaz^alpha+beta-3dz \
    & =t^beta-1e^pi i(1-alpha)int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
    & =-t^beta-1e^-pi ialphaB(frac1mt;alpha+beta-2,2-alpha)
    endalign$$



    which is the same as Mathematica's result.






    share|cite|improve this answer

























      up vote
      0
      down vote



      accepted










      By the substitution $z=frac1ty$, we get (let $m=y_textmin$)
      $$beginalign
      int^1/mt_0(1-frac1z)^1-alphat^beta-1z^beta-2dz & =t^beta-1int^1/mt_0(frac1-zz)^1-alphaz^beta-2dz\
      & =t^beta-1int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
      & =t^beta-1int^1/mt_0(e^pi i(1-z))^1-alphaz^alpha+beta-3dz \
      & =t^beta-1e^pi i(1-alpha)int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
      & =-t^beta-1e^-pi ialphaB(frac1mt;alpha+beta-2,2-alpha)
      endalign$$



      which is the same as Mathematica's result.






      share|cite|improve this answer























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        By the substitution $z=frac1ty$, we get (let $m=y_textmin$)
        $$beginalign
        int^1/mt_0(1-frac1z)^1-alphat^beta-1z^beta-2dz & =t^beta-1int^1/mt_0(frac1-zz)^1-alphaz^beta-2dz\
        & =t^beta-1int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
        & =t^beta-1int^1/mt_0(e^pi i(1-z))^1-alphaz^alpha+beta-3dz \
        & =t^beta-1e^pi i(1-alpha)int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
        & =-t^beta-1e^-pi ialphaB(frac1mt;alpha+beta-2,2-alpha)
        endalign$$



        which is the same as Mathematica's result.






        share|cite|improve this answer













        By the substitution $z=frac1ty$, we get (let $m=y_textmin$)
        $$beginalign
        int^1/mt_0(1-frac1z)^1-alphat^beta-1z^beta-2dz & =t^beta-1int^1/mt_0(frac1-zz)^1-alphaz^beta-2dz\
        & =t^beta-1int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
        & =t^beta-1int^1/mt_0(e^pi i(1-z))^1-alphaz^alpha+beta-3dz \
        & =t^beta-1e^pi i(1-alpha)int^1/mt_0(1-z)^1-alphaz^alpha+beta-3dz\
        & =-t^beta-1e^-pi ialphaB(frac1mt;alpha+beta-2,2-alpha)
        endalign$$



        which is the same as Mathematica's result.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 21 at 13:32









        Szeto

        4,1631521




        4,1631521






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858235%2fevaluate-this-integral-int-y-min-infty-1-ty1-alphay-betady%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?