Evaluating area of $frac34$ of a disc

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













Evaluate $$int_gamma_1cup gamma_2xdx+x^2ydy$$



Where



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem




Visualising the curve it is a there quarters disc



So the curves will be as followed



$gamma_a(t)=(0,1+t),tin[0,1]$



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_b(t)=(2-t,0),tin[0,1]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem



In the case of $gamma_a(t)$ and $gamma_b(t)$ both vanishes as $Q_y=2xy$ and once $x=0$ and once $y=0$ so the integrand vanishes



$$I_1=int_gamma_1xdx+x^2ydy=intint_D 2xy dx dy=int_0^2int_-fracpi2^pi(2rho cos theta *rho sin theta *rho )d theta drho=\=int_0^2int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^2int_-fracpi2^pi(rho^3 2cos thetasin theta)d theta drho=\=int_0^2int_-fracpi2^pi(rho^3 sin 2theta)d theta drho=int_0^2rho^3*(-fraccos2theta2|_-fracpi2^pi)drho=-int_0^2rho^3 drho=-4$$



The same happen to



$$I_2=-int_gamma_2xdx+x^2ydy=-int_0^1int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^1rho^3 drho=1$$



So overall we have $-4+1=-3$ which is obviously wrong, what have I missed?



Which is obviously wrong, what have I missed?







share|cite|improve this question





















  • Thanks! but I will still get $-frac154+1$
    – gbox
    Aug 3 at 7:25










  • What are $gamma_a, gamma_b$ doing in this question?
    – xbh
    Aug 3 at 7:27










  • I wanted to create a closed curve so I can use Green's theorem
    – gbox
    Aug 3 at 7:29










  • Using Green's theorem need to the area be closed but $gamma_1cupgamma_2$ isn't close in the main question.
    – user 108128
    Aug 3 at 7:29











  • Also what's the orientation?
    – xbh
    Aug 3 at 7:30














up vote
0
down vote

favorite













Evaluate $$int_gamma_1cup gamma_2xdx+x^2ydy$$



Where



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem




Visualising the curve it is a there quarters disc



So the curves will be as followed



$gamma_a(t)=(0,1+t),tin[0,1]$



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_b(t)=(2-t,0),tin[0,1]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem



In the case of $gamma_a(t)$ and $gamma_b(t)$ both vanishes as $Q_y=2xy$ and once $x=0$ and once $y=0$ so the integrand vanishes



$$I_1=int_gamma_1xdx+x^2ydy=intint_D 2xy dx dy=int_0^2int_-fracpi2^pi(2rho cos theta *rho sin theta *rho )d theta drho=\=int_0^2int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^2int_-fracpi2^pi(rho^3 2cos thetasin theta)d theta drho=\=int_0^2int_-fracpi2^pi(rho^3 sin 2theta)d theta drho=int_0^2rho^3*(-fraccos2theta2|_-fracpi2^pi)drho=-int_0^2rho^3 drho=-4$$



The same happen to



$$I_2=-int_gamma_2xdx+x^2ydy=-int_0^1int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^1rho^3 drho=1$$



So overall we have $-4+1=-3$ which is obviously wrong, what have I missed?



Which is obviously wrong, what have I missed?







share|cite|improve this question





















  • Thanks! but I will still get $-frac154+1$
    – gbox
    Aug 3 at 7:25










  • What are $gamma_a, gamma_b$ doing in this question?
    – xbh
    Aug 3 at 7:27










  • I wanted to create a closed curve so I can use Green's theorem
    – gbox
    Aug 3 at 7:29










  • Using Green's theorem need to the area be closed but $gamma_1cupgamma_2$ isn't close in the main question.
    – user 108128
    Aug 3 at 7:29











  • Also what's the orientation?
    – xbh
    Aug 3 at 7:30












up vote
0
down vote

favorite









up vote
0
down vote

favorite












Evaluate $$int_gamma_1cup gamma_2xdx+x^2ydy$$



Where



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem




Visualising the curve it is a there quarters disc



So the curves will be as followed



$gamma_a(t)=(0,1+t),tin[0,1]$



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_b(t)=(2-t,0),tin[0,1]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem



In the case of $gamma_a(t)$ and $gamma_b(t)$ both vanishes as $Q_y=2xy$ and once $x=0$ and once $y=0$ so the integrand vanishes



$$I_1=int_gamma_1xdx+x^2ydy=intint_D 2xy dx dy=int_0^2int_-fracpi2^pi(2rho cos theta *rho sin theta *rho )d theta drho=\=int_0^2int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^2int_-fracpi2^pi(rho^3 2cos thetasin theta)d theta drho=\=int_0^2int_-fracpi2^pi(rho^3 sin 2theta)d theta drho=int_0^2rho^3*(-fraccos2theta2|_-fracpi2^pi)drho=-int_0^2rho^3 drho=-4$$



The same happen to



$$I_2=-int_gamma_2xdx+x^2ydy=-int_0^1int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^1rho^3 drho=1$$



So overall we have $-4+1=-3$ which is obviously wrong, what have I missed?



Which is obviously wrong, what have I missed?







share|cite|improve this question














Evaluate $$int_gamma_1cup gamma_2xdx+x^2ydy$$



Where



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem




Visualising the curve it is a there quarters disc



So the curves will be as followed



$gamma_a(t)=(0,1+t),tin[0,1]$



$gamma_1(t)=(2cos t,2sin t),tin [-fracpi2,pi]$



$gamma_b(t)=(2-t,0),tin[0,1]$



$gamma_2(t)=(cos t,sin t),tin [-fracpi2,pi]$



Using Green's theorem



In the case of $gamma_a(t)$ and $gamma_b(t)$ both vanishes as $Q_y=2xy$ and once $x=0$ and once $y=0$ so the integrand vanishes



$$I_1=int_gamma_1xdx+x^2ydy=intint_D 2xy dx dy=int_0^2int_-fracpi2^pi(2rho cos theta *rho sin theta *rho )d theta drho=\=int_0^2int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^2int_-fracpi2^pi(rho^3 2cos thetasin theta)d theta drho=\=int_0^2int_-fracpi2^pi(rho^3 sin 2theta)d theta drho=int_0^2rho^3*(-fraccos2theta2|_-fracpi2^pi)drho=-int_0^2rho^3 drho=-4$$



The same happen to



$$I_2=-int_gamma_2xdx+x^2ydy=-int_0^1int_-fracpi2^pi(2rho^3 cos thetasin theta)d theta drho=int_0^1rho^3 drho=1$$



So overall we have $-4+1=-3$ which is obviously wrong, what have I missed?



Which is obviously wrong, what have I missed?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 3 at 7:33
























asked Aug 2 at 22:46









gbox

5,30851841




5,30851841











  • Thanks! but I will still get $-frac154+1$
    – gbox
    Aug 3 at 7:25










  • What are $gamma_a, gamma_b$ doing in this question?
    – xbh
    Aug 3 at 7:27










  • I wanted to create a closed curve so I can use Green's theorem
    – gbox
    Aug 3 at 7:29










  • Using Green's theorem need to the area be closed but $gamma_1cupgamma_2$ isn't close in the main question.
    – user 108128
    Aug 3 at 7:29











  • Also what's the orientation?
    – xbh
    Aug 3 at 7:30
















  • Thanks! but I will still get $-frac154+1$
    – gbox
    Aug 3 at 7:25










  • What are $gamma_a, gamma_b$ doing in this question?
    – xbh
    Aug 3 at 7:27










  • I wanted to create a closed curve so I can use Green's theorem
    – gbox
    Aug 3 at 7:29










  • Using Green's theorem need to the area be closed but $gamma_1cupgamma_2$ isn't close in the main question.
    – user 108128
    Aug 3 at 7:29











  • Also what's the orientation?
    – xbh
    Aug 3 at 7:30















Thanks! but I will still get $-frac154+1$
– gbox
Aug 3 at 7:25




Thanks! but I will still get $-frac154+1$
– gbox
Aug 3 at 7:25












What are $gamma_a, gamma_b$ doing in this question?
– xbh
Aug 3 at 7:27




What are $gamma_a, gamma_b$ doing in this question?
– xbh
Aug 3 at 7:27












I wanted to create a closed curve so I can use Green's theorem
– gbox
Aug 3 at 7:29




I wanted to create a closed curve so I can use Green's theorem
– gbox
Aug 3 at 7:29












Using Green's theorem need to the area be closed but $gamma_1cupgamma_2$ isn't close in the main question.
– user 108128
Aug 3 at 7:29





Using Green's theorem need to the area be closed but $gamma_1cupgamma_2$ isn't close in the main question.
– user 108128
Aug 3 at 7:29













Also what's the orientation?
– xbh
Aug 3 at 7:30




Also what's the orientation?
– xbh
Aug 3 at 7:30










3 Answers
3






active

oldest

votes

















up vote
1
down vote













Hint: Consider follwoing paths to close the area with positive directions



$gamma_a(t)=(0,-1-t),tin[0,1]$,



$gamma_1(t)=(2cos t,2sin t),tin [-dfracpi2,pi]$,



$gamma_b(t)=(-2+t,0),tin[0,1]$,



$gamma_2(t)=(cos t,sin t),tin [-dfracpi2,pi]$.



Now use direct way with path $gamma_a+gamma_1+gamma_b-gamma_2$. With Green's theorem
$$int_1^2int_-fracpi2^pi2 r^3 sin tcos t dt dr=colorblue-dfrac154$$




Edit: Details in direct way are
$$displaystyleint_gamma_a=int_0^10d0+0dt=0$$
$$displaystyleint_gamma_1=int_-fracpi2^pi-4sin tcos t+16sin tcos^3 t dt=-2$$
$$displaystyleint_gamma_b=int_0^1(-2+t) dt=-dfrac32$$
$$displaystyleint_gamma_2=int_-fracpi2^pi-sin tcos t+sin tcos^3 t dt=dfrac14$$
these conclude $0+(-2)+(-dfrac32)-(dfrac14)=colorblue-dfrac154$






share|cite|improve this answer























  • $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
    – gbox
    Aug 3 at 8:43











  • Nah. Only $displaystyleint_gamma_a=0$ .
    – user 108128
    Aug 3 at 8:45











  • But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
    – gbox
    Aug 3 at 8:54







  • 1




    with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
    – user 108128
    Aug 3 at 9:15







  • 1




    @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
    – gimusi
    Aug 3 at 12:09

















up vote
1
down vote













Let define



  • $gamma_3(t)=(-2+2t,0),tin[0,1]$

  • $gamma_4(t)=(0,-2t),tin[0,1]$

  • $gamma_5(t)=(-1+t,0),tin[0,1]$

  • $gamma_6(t)=(0,-t),tin[0,1]$

then we have



$$int_gamma_1cup gamma_2xdx+x^2ydy=int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy-int_gamma_3xdx+x^2ydy-int_gamma_4xdx+x^2ydy-int_gamma_5xdx+x^2ydy-int_gamma_6xdx+x^2ydy$$



and by Green theorem



$$int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy=iint_D_1 2xy,dx,dy+iint_D_22xy,dx,dy$$



and by polar coordinates



$$iint_D_12xy,dx,dy=int_-pi/2^pi dtheta int_0^2 2rho^3cos theta sin theta, drho=-frac14$$



$$iint_D_22xy,dx,dy=int_-pi/2^pi dtheta int_0^1 2rho^3cos theta sin theta, drho=-4$$



and



$$int_gamma_3xdx+x^2ydy=int_0^1 2(-2+2t)dt=left[-4t+2t^2right]_0^1=-2$$



$$int_gamma_4xdx+x^2ydy=0$$



$$int_gamma_5xdx+x^2ydy=int_0^1 (-1+t)dt=left[-t+frac12 t^2right]_0^1=-frac12$$



$$int_gamma_6xdx+x^2ydy=0$$



therefore



$$int_gamma_1cup gamma_2xdx+x^2ydy=-frac14-4+2+frac12=frac-1-16+8+24=-frac74$$



which is consistent with direct evaluation for




  • integral 1 $int_gamma_1xdx+x^2ydy=-2$


  • integral 2 $int_gamma_1xdx+x^2ydy=frac14$





share|cite|improve this answer























  • Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
    – gbox
    Aug 3 at 10:21










  • @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
    – gimusi
    Aug 3 at 11:59

















up vote
0
down vote













You are wrong in the limits of the outer integral. It should be from 1 to 2 therefore:$$int_1^2int_-fracpi2^pir^3sin2theta dtheta dr=int_1^2-r^3dr=-dfrac154$$






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870561%2fevaluating-area-of-frac34-of-a-disc%23new-answer', 'question_page');

    );

    Post as a guest






























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Hint: Consider follwoing paths to close the area with positive directions



    $gamma_a(t)=(0,-1-t),tin[0,1]$,



    $gamma_1(t)=(2cos t,2sin t),tin [-dfracpi2,pi]$,



    $gamma_b(t)=(-2+t,0),tin[0,1]$,



    $gamma_2(t)=(cos t,sin t),tin [-dfracpi2,pi]$.



    Now use direct way with path $gamma_a+gamma_1+gamma_b-gamma_2$. With Green's theorem
    $$int_1^2int_-fracpi2^pi2 r^3 sin tcos t dt dr=colorblue-dfrac154$$




    Edit: Details in direct way are
    $$displaystyleint_gamma_a=int_0^10d0+0dt=0$$
    $$displaystyleint_gamma_1=int_-fracpi2^pi-4sin tcos t+16sin tcos^3 t dt=-2$$
    $$displaystyleint_gamma_b=int_0^1(-2+t) dt=-dfrac32$$
    $$displaystyleint_gamma_2=int_-fracpi2^pi-sin tcos t+sin tcos^3 t dt=dfrac14$$
    these conclude $0+(-2)+(-dfrac32)-(dfrac14)=colorblue-dfrac154$






    share|cite|improve this answer























    • $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
      – gbox
      Aug 3 at 8:43











    • Nah. Only $displaystyleint_gamma_a=0$ .
      – user 108128
      Aug 3 at 8:45











    • But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
      – gbox
      Aug 3 at 8:54







    • 1




      with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
      – user 108128
      Aug 3 at 9:15







    • 1




      @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
      – gimusi
      Aug 3 at 12:09














    up vote
    1
    down vote













    Hint: Consider follwoing paths to close the area with positive directions



    $gamma_a(t)=(0,-1-t),tin[0,1]$,



    $gamma_1(t)=(2cos t,2sin t),tin [-dfracpi2,pi]$,



    $gamma_b(t)=(-2+t,0),tin[0,1]$,



    $gamma_2(t)=(cos t,sin t),tin [-dfracpi2,pi]$.



    Now use direct way with path $gamma_a+gamma_1+gamma_b-gamma_2$. With Green's theorem
    $$int_1^2int_-fracpi2^pi2 r^3 sin tcos t dt dr=colorblue-dfrac154$$




    Edit: Details in direct way are
    $$displaystyleint_gamma_a=int_0^10d0+0dt=0$$
    $$displaystyleint_gamma_1=int_-fracpi2^pi-4sin tcos t+16sin tcos^3 t dt=-2$$
    $$displaystyleint_gamma_b=int_0^1(-2+t) dt=-dfrac32$$
    $$displaystyleint_gamma_2=int_-fracpi2^pi-sin tcos t+sin tcos^3 t dt=dfrac14$$
    these conclude $0+(-2)+(-dfrac32)-(dfrac14)=colorblue-dfrac154$






    share|cite|improve this answer























    • $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
      – gbox
      Aug 3 at 8:43











    • Nah. Only $displaystyleint_gamma_a=0$ .
      – user 108128
      Aug 3 at 8:45











    • But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
      – gbox
      Aug 3 at 8:54







    • 1




      with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
      – user 108128
      Aug 3 at 9:15







    • 1




      @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
      – gimusi
      Aug 3 at 12:09












    up vote
    1
    down vote










    up vote
    1
    down vote









    Hint: Consider follwoing paths to close the area with positive directions



    $gamma_a(t)=(0,-1-t),tin[0,1]$,



    $gamma_1(t)=(2cos t,2sin t),tin [-dfracpi2,pi]$,



    $gamma_b(t)=(-2+t,0),tin[0,1]$,



    $gamma_2(t)=(cos t,sin t),tin [-dfracpi2,pi]$.



    Now use direct way with path $gamma_a+gamma_1+gamma_b-gamma_2$. With Green's theorem
    $$int_1^2int_-fracpi2^pi2 r^3 sin tcos t dt dr=colorblue-dfrac154$$




    Edit: Details in direct way are
    $$displaystyleint_gamma_a=int_0^10d0+0dt=0$$
    $$displaystyleint_gamma_1=int_-fracpi2^pi-4sin tcos t+16sin tcos^3 t dt=-2$$
    $$displaystyleint_gamma_b=int_0^1(-2+t) dt=-dfrac32$$
    $$displaystyleint_gamma_2=int_-fracpi2^pi-sin tcos t+sin tcos^3 t dt=dfrac14$$
    these conclude $0+(-2)+(-dfrac32)-(dfrac14)=colorblue-dfrac154$






    share|cite|improve this answer















    Hint: Consider follwoing paths to close the area with positive directions



    $gamma_a(t)=(0,-1-t),tin[0,1]$,



    $gamma_1(t)=(2cos t,2sin t),tin [-dfracpi2,pi]$,



    $gamma_b(t)=(-2+t,0),tin[0,1]$,



    $gamma_2(t)=(cos t,sin t),tin [-dfracpi2,pi]$.



    Now use direct way with path $gamma_a+gamma_1+gamma_b-gamma_2$. With Green's theorem
    $$int_1^2int_-fracpi2^pi2 r^3 sin tcos t dt dr=colorblue-dfrac154$$




    Edit: Details in direct way are
    $$displaystyleint_gamma_a=int_0^10d0+0dt=0$$
    $$displaystyleint_gamma_1=int_-fracpi2^pi-4sin tcos t+16sin tcos^3 t dt=-2$$
    $$displaystyleint_gamma_b=int_0^1(-2+t) dt=-dfrac32$$
    $$displaystyleint_gamma_2=int_-fracpi2^pi-sin tcos t+sin tcos^3 t dt=dfrac14$$
    these conclude $0+(-2)+(-dfrac32)-(dfrac14)=colorblue-dfrac154$







    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited Aug 3 at 11:49


























    answered Aug 3 at 7:46









    user 108128

    18.7k41544




    18.7k41544











    • $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
      – gbox
      Aug 3 at 8:43











    • Nah. Only $displaystyleint_gamma_a=0$ .
      – user 108128
      Aug 3 at 8:45











    • But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
      – gbox
      Aug 3 at 8:54







    • 1




      with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
      – user 108128
      Aug 3 at 9:15







    • 1




      @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
      – gimusi
      Aug 3 at 12:09
















    • $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
      – gbox
      Aug 3 at 8:43











    • Nah. Only $displaystyleint_gamma_a=0$ .
      – user 108128
      Aug 3 at 8:45











    • But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
      – gbox
      Aug 3 at 8:54







    • 1




      with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
      – user 108128
      Aug 3 at 9:15







    • 1




      @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
      – gimusi
      Aug 3 at 12:09















    $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
    – gbox
    Aug 3 at 8:43





    $gamma_a,gamma_b$ vanishes and $gamma_1cup gamma_2$ is $int_1^2int_frac-pi2^pi sr^3 sin tcos t dt dr$?
    – gbox
    Aug 3 at 8:43













    Nah. Only $displaystyleint_gamma_a=0$ .
    – user 108128
    Aug 3 at 8:45





    Nah. Only $displaystyleint_gamma_a=0$ .
    – user 108128
    Aug 3 at 8:45













    But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
    – gbox
    Aug 3 at 8:54





    But, we have $Pdx=x, Qdy=x^2y$ so $Q_x-P_y=2xy-0$ and on $gamma_b$, $y=0$ And how can the area be negative?
    – gbox
    Aug 3 at 8:54





    1




    1




    with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
    – user 108128
    Aug 3 at 9:15





    with $gamma_b$, $y=0$ so it's $int_0^1 xdx=int_0^1 (-2+t)dt=-dfrac32$
    – user 108128
    Aug 3 at 9:15





    1




    1




    @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
    – gimusi
    Aug 3 at 12:09




    @user108128 The question states $int_gamma_1cup gamma_2xdx+x^2ydy$ using Green theorem and $gamma_1cup gamma_2$ is not coled. Thus, in mine interpretation, we need to close the area, apply Green theorem and subtract the line integral added.
    – gimusi
    Aug 3 at 12:09










    up vote
    1
    down vote













    Let define



    • $gamma_3(t)=(-2+2t,0),tin[0,1]$

    • $gamma_4(t)=(0,-2t),tin[0,1]$

    • $gamma_5(t)=(-1+t,0),tin[0,1]$

    • $gamma_6(t)=(0,-t),tin[0,1]$

    then we have



    $$int_gamma_1cup gamma_2xdx+x^2ydy=int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy-int_gamma_3xdx+x^2ydy-int_gamma_4xdx+x^2ydy-int_gamma_5xdx+x^2ydy-int_gamma_6xdx+x^2ydy$$



    and by Green theorem



    $$int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy=iint_D_1 2xy,dx,dy+iint_D_22xy,dx,dy$$



    and by polar coordinates



    $$iint_D_12xy,dx,dy=int_-pi/2^pi dtheta int_0^2 2rho^3cos theta sin theta, drho=-frac14$$



    $$iint_D_22xy,dx,dy=int_-pi/2^pi dtheta int_0^1 2rho^3cos theta sin theta, drho=-4$$



    and



    $$int_gamma_3xdx+x^2ydy=int_0^1 2(-2+2t)dt=left[-4t+2t^2right]_0^1=-2$$



    $$int_gamma_4xdx+x^2ydy=0$$



    $$int_gamma_5xdx+x^2ydy=int_0^1 (-1+t)dt=left[-t+frac12 t^2right]_0^1=-frac12$$



    $$int_gamma_6xdx+x^2ydy=0$$



    therefore



    $$int_gamma_1cup gamma_2xdx+x^2ydy=-frac14-4+2+frac12=frac-1-16+8+24=-frac74$$



    which is consistent with direct evaluation for




    • integral 1 $int_gamma_1xdx+x^2ydy=-2$


    • integral 2 $int_gamma_1xdx+x^2ydy=frac14$





    share|cite|improve this answer























    • Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
      – gbox
      Aug 3 at 10:21










    • @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
      – gimusi
      Aug 3 at 11:59














    up vote
    1
    down vote













    Let define



    • $gamma_3(t)=(-2+2t,0),tin[0,1]$

    • $gamma_4(t)=(0,-2t),tin[0,1]$

    • $gamma_5(t)=(-1+t,0),tin[0,1]$

    • $gamma_6(t)=(0,-t),tin[0,1]$

    then we have



    $$int_gamma_1cup gamma_2xdx+x^2ydy=int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy-int_gamma_3xdx+x^2ydy-int_gamma_4xdx+x^2ydy-int_gamma_5xdx+x^2ydy-int_gamma_6xdx+x^2ydy$$



    and by Green theorem



    $$int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy=iint_D_1 2xy,dx,dy+iint_D_22xy,dx,dy$$



    and by polar coordinates



    $$iint_D_12xy,dx,dy=int_-pi/2^pi dtheta int_0^2 2rho^3cos theta sin theta, drho=-frac14$$



    $$iint_D_22xy,dx,dy=int_-pi/2^pi dtheta int_0^1 2rho^3cos theta sin theta, drho=-4$$



    and



    $$int_gamma_3xdx+x^2ydy=int_0^1 2(-2+2t)dt=left[-4t+2t^2right]_0^1=-2$$



    $$int_gamma_4xdx+x^2ydy=0$$



    $$int_gamma_5xdx+x^2ydy=int_0^1 (-1+t)dt=left[-t+frac12 t^2right]_0^1=-frac12$$



    $$int_gamma_6xdx+x^2ydy=0$$



    therefore



    $$int_gamma_1cup gamma_2xdx+x^2ydy=-frac14-4+2+frac12=frac-1-16+8+24=-frac74$$



    which is consistent with direct evaluation for




    • integral 1 $int_gamma_1xdx+x^2ydy=-2$


    • integral 2 $int_gamma_1xdx+x^2ydy=frac14$





    share|cite|improve this answer























    • Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
      – gbox
      Aug 3 at 10:21










    • @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
      – gimusi
      Aug 3 at 11:59












    up vote
    1
    down vote










    up vote
    1
    down vote









    Let define



    • $gamma_3(t)=(-2+2t,0),tin[0,1]$

    • $gamma_4(t)=(0,-2t),tin[0,1]$

    • $gamma_5(t)=(-1+t,0),tin[0,1]$

    • $gamma_6(t)=(0,-t),tin[0,1]$

    then we have



    $$int_gamma_1cup gamma_2xdx+x^2ydy=int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy-int_gamma_3xdx+x^2ydy-int_gamma_4xdx+x^2ydy-int_gamma_5xdx+x^2ydy-int_gamma_6xdx+x^2ydy$$



    and by Green theorem



    $$int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy=iint_D_1 2xy,dx,dy+iint_D_22xy,dx,dy$$



    and by polar coordinates



    $$iint_D_12xy,dx,dy=int_-pi/2^pi dtheta int_0^2 2rho^3cos theta sin theta, drho=-frac14$$



    $$iint_D_22xy,dx,dy=int_-pi/2^pi dtheta int_0^1 2rho^3cos theta sin theta, drho=-4$$



    and



    $$int_gamma_3xdx+x^2ydy=int_0^1 2(-2+2t)dt=left[-4t+2t^2right]_0^1=-2$$



    $$int_gamma_4xdx+x^2ydy=0$$



    $$int_gamma_5xdx+x^2ydy=int_0^1 (-1+t)dt=left[-t+frac12 t^2right]_0^1=-frac12$$



    $$int_gamma_6xdx+x^2ydy=0$$



    therefore



    $$int_gamma_1cup gamma_2xdx+x^2ydy=-frac14-4+2+frac12=frac-1-16+8+24=-frac74$$



    which is consistent with direct evaluation for




    • integral 1 $int_gamma_1xdx+x^2ydy=-2$


    • integral 2 $int_gamma_1xdx+x^2ydy=frac14$





    share|cite|improve this answer















    Let define



    • $gamma_3(t)=(-2+2t,0),tin[0,1]$

    • $gamma_4(t)=(0,-2t),tin[0,1]$

    • $gamma_5(t)=(-1+t,0),tin[0,1]$

    • $gamma_6(t)=(0,-t),tin[0,1]$

    then we have



    $$int_gamma_1cup gamma_2xdx+x^2ydy=int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy-int_gamma_3xdx+x^2ydy-int_gamma_4xdx+x^2ydy-int_gamma_5xdx+x^2ydy-int_gamma_6xdx+x^2ydy$$



    and by Green theorem



    $$int_gamma_1cup gamma_3cup gamma_4xdx+x^2ydy+int_gamma_2cup gamma_5cup gamma_6xdx+x^2ydy=iint_D_1 2xy,dx,dy+iint_D_22xy,dx,dy$$



    and by polar coordinates



    $$iint_D_12xy,dx,dy=int_-pi/2^pi dtheta int_0^2 2rho^3cos theta sin theta, drho=-frac14$$



    $$iint_D_22xy,dx,dy=int_-pi/2^pi dtheta int_0^1 2rho^3cos theta sin theta, drho=-4$$



    and



    $$int_gamma_3xdx+x^2ydy=int_0^1 2(-2+2t)dt=left[-4t+2t^2right]_0^1=-2$$



    $$int_gamma_4xdx+x^2ydy=0$$



    $$int_gamma_5xdx+x^2ydy=int_0^1 (-1+t)dt=left[-t+frac12 t^2right]_0^1=-frac12$$



    $$int_gamma_6xdx+x^2ydy=0$$



    therefore



    $$int_gamma_1cup gamma_2xdx+x^2ydy=-frac14-4+2+frac12=frac-1-16+8+24=-frac74$$



    which is consistent with direct evaluation for




    • integral 1 $int_gamma_1xdx+x^2ydy=-2$


    • integral 2 $int_gamma_1xdx+x^2ydy=frac14$






    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited Aug 3 at 12:06


























    answered Aug 3 at 7:47









    gimusi

    63.8k73480




    63.8k73480











    • Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
      – gbox
      Aug 3 at 10:21










    • @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
      – gimusi
      Aug 3 at 11:59
















    • Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
      – gbox
      Aug 3 at 10:21










    • @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
      – gimusi
      Aug 3 at 11:59















    Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
    – gbox
    Aug 3 at 10:21




    Can not we use just $gamma_a,gamma_b$ as I did? you use two curves to describe describe a line?
    – gbox
    Aug 3 at 10:21












    @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
    – gimusi
    Aug 3 at 11:59




    @gbox I've made in that way to use Green theorem as requested, but of course we can also proceed in other equivalent ways.
    – gimusi
    Aug 3 at 11:59










    up vote
    0
    down vote













    You are wrong in the limits of the outer integral. It should be from 1 to 2 therefore:$$int_1^2int_-fracpi2^pir^3sin2theta dtheta dr=int_1^2-r^3dr=-dfrac154$$






    share|cite|improve this answer



























      up vote
      0
      down vote













      You are wrong in the limits of the outer integral. It should be from 1 to 2 therefore:$$int_1^2int_-fracpi2^pir^3sin2theta dtheta dr=int_1^2-r^3dr=-dfrac154$$






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        You are wrong in the limits of the outer integral. It should be from 1 to 2 therefore:$$int_1^2int_-fracpi2^pir^3sin2theta dtheta dr=int_1^2-r^3dr=-dfrac154$$






        share|cite|improve this answer















        You are wrong in the limits of the outer integral. It should be from 1 to 2 therefore:$$int_1^2int_-fracpi2^pir^3sin2theta dtheta dr=int_1^2-r^3dr=-dfrac154$$







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 3 at 9:00


























        answered Aug 3 at 8:55









        Mostafa Ayaz

        8,5183630




        8,5183630






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870561%2fevaluating-area-of-frac34-of-a-disc%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?