Find the value of $frac (a^2+b^2+c^2+d^2)(sin 20°)(bd-ac).$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Given that $a,b,c,d in R$, if $$ a sec(200°) - c tan(200°) =d$$ and $$b sec(200°) + d tan(200°) = c$$ then find the value of $$dfrac (a^2+b^2+c^2+d^2)(sin 20°)(bd-ac).$$




My attempt:Let $theta=200^o$ then our equations become $a sectheta - c tantheta =d$ and $b sectheta+ d tantheta= c$

Squaring and adding them,we get

$a^2sec^2theta+c^2tan^2theta-2acsecthetatantheta+b^2sec^2theta+d^2tan^2theta+2bdsecthetatantheta=d^2+c^2$


$a^2sec^2theta+c^2tan^2theta+b^2sec^2theta+d^2tan^2theta-d^2-c^2=2acsecthetatantheta-2bdsecthetatantheta$


I am stuck here.







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    Given that $a,b,c,d in R$, if $$ a sec(200°) - c tan(200°) =d$$ and $$b sec(200°) + d tan(200°) = c$$ then find the value of $$dfrac (a^2+b^2+c^2+d^2)(sin 20°)(bd-ac).$$




    My attempt:Let $theta=200^o$ then our equations become $a sectheta - c tantheta =d$ and $b sectheta+ d tantheta= c$

    Squaring and adding them,we get

    $a^2sec^2theta+c^2tan^2theta-2acsecthetatantheta+b^2sec^2theta+d^2tan^2theta+2bdsecthetatantheta=d^2+c^2$


    $a^2sec^2theta+c^2tan^2theta+b^2sec^2theta+d^2tan^2theta-d^2-c^2=2acsecthetatantheta-2bdsecthetatantheta$


    I am stuck here.







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Given that $a,b,c,d in R$, if $$ a sec(200°) - c tan(200°) =d$$ and $$b sec(200°) + d tan(200°) = c$$ then find the value of $$dfrac (a^2+b^2+c^2+d^2)(sin 20°)(bd-ac).$$




      My attempt:Let $theta=200^o$ then our equations become $a sectheta - c tantheta =d$ and $b sectheta+ d tantheta= c$

      Squaring and adding them,we get

      $a^2sec^2theta+c^2tan^2theta-2acsecthetatantheta+b^2sec^2theta+d^2tan^2theta+2bdsecthetatantheta=d^2+c^2$


      $a^2sec^2theta+c^2tan^2theta+b^2sec^2theta+d^2tan^2theta-d^2-c^2=2acsecthetatantheta-2bdsecthetatantheta$


      I am stuck here.







      share|cite|improve this question













      Given that $a,b,c,d in R$, if $$ a sec(200°) - c tan(200°) =d$$ and $$b sec(200°) + d tan(200°) = c$$ then find the value of $$dfrac (a^2+b^2+c^2+d^2)(sin 20°)(bd-ac).$$




      My attempt:Let $theta=200^o$ then our equations become $a sectheta - c tantheta =d$ and $b sectheta+ d tantheta= c$

      Squaring and adding them,we get

      $a^2sec^2theta+c^2tan^2theta-2acsecthetatantheta+b^2sec^2theta+d^2tan^2theta+2bdsecthetatantheta=d^2+c^2$


      $a^2sec^2theta+c^2tan^2theta+b^2sec^2theta+d^2tan^2theta-d^2-c^2=2acsecthetatantheta-2bdsecthetatantheta$


      I am stuck here.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Martin Sleziak

      43.4k6111259




      43.4k6111259









      asked 2 days ago









      learner_avid

      654212




      654212




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Hint:



          Method$#1:$



          Use $sec(180^circ+y)=-sec y,tan(180^circ+y)=+tan y$



          Solve for $sec20^circ,tan20^circ$



          Finally $sin t=dfractan tsec t (1)$



          Here $t=20^circ$



          Method$#2:$



          Solve for $sec200^circ,tan200^circ$



          Use $(1),$ here $t=200^circ$



          Finally $sin(180^circ+y)=-sin y $






          share|cite|improve this answer





















          • I got it,thank you
            – learner_avid
            2 days ago










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871691%2ffind-the-value-of-frac-a2b2c2d2-sin-20bd-ac%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Hint:



          Method$#1:$



          Use $sec(180^circ+y)=-sec y,tan(180^circ+y)=+tan y$



          Solve for $sec20^circ,tan20^circ$



          Finally $sin t=dfractan tsec t (1)$



          Here $t=20^circ$



          Method$#2:$



          Solve for $sec200^circ,tan200^circ$



          Use $(1),$ here $t=200^circ$



          Finally $sin(180^circ+y)=-sin y $






          share|cite|improve this answer





















          • I got it,thank you
            – learner_avid
            2 days ago














          up vote
          1
          down vote



          accepted










          Hint:



          Method$#1:$



          Use $sec(180^circ+y)=-sec y,tan(180^circ+y)=+tan y$



          Solve for $sec20^circ,tan20^circ$



          Finally $sin t=dfractan tsec t (1)$



          Here $t=20^circ$



          Method$#2:$



          Solve for $sec200^circ,tan200^circ$



          Use $(1),$ here $t=200^circ$



          Finally $sin(180^circ+y)=-sin y $






          share|cite|improve this answer





















          • I got it,thank you
            – learner_avid
            2 days ago












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Hint:



          Method$#1:$



          Use $sec(180^circ+y)=-sec y,tan(180^circ+y)=+tan y$



          Solve for $sec20^circ,tan20^circ$



          Finally $sin t=dfractan tsec t (1)$



          Here $t=20^circ$



          Method$#2:$



          Solve for $sec200^circ,tan200^circ$



          Use $(1),$ here $t=200^circ$



          Finally $sin(180^circ+y)=-sin y $






          share|cite|improve this answer













          Hint:



          Method$#1:$



          Use $sec(180^circ+y)=-sec y,tan(180^circ+y)=+tan y$



          Solve for $sec20^circ,tan20^circ$



          Finally $sin t=dfractan tsec t (1)$



          Here $t=20^circ$



          Method$#2:$



          Solve for $sec200^circ,tan200^circ$



          Use $(1),$ here $t=200^circ$



          Finally $sin(180^circ+y)=-sin y $







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered 2 days ago









          lab bhattacharjee

          214k14152263




          214k14152263











          • I got it,thank you
            – learner_avid
            2 days ago
















          • I got it,thank you
            – learner_avid
            2 days ago















          I got it,thank you
          – learner_avid
          2 days ago




          I got it,thank you
          – learner_avid
          2 days ago












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871691%2ffind-the-value-of-frac-a2b2c2d2-sin-20bd-ac%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?