For $a> 0$, determine $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












For $a> 0$, determine $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)$



My attempts : $sum_k=1^n( a^frackn^2 - 1) = ( a^frac1n^2- 1) + ( a^frac2n^2- 1)+......... +(a^fracnn^2- 1)=a^frac1n^2+ a^frac2n^2++.....+a^fracnn^2- n $



ThereFore $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= a^lim_nrightarrow inftyfrac1n^2+ a^lim_nrightarrow inftyfrac2n^2++.....+a^lim_nrightarrow inftyfracnn^2 - lim_nrightarrow infty n = lim_nrightarrow infty (a^0 + a^0 +.....+a^0) -lim_nrightarrow infty n = lim_nrightarrow infty( 1+1.....+1) -lim_nrightarrow infty n=lim_nrightarrow infty n -lim_nrightarrow infty n = 0 $



Hence $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= 0$



Is my answer is correct ??



Any hints / solution will be appreciated



thanks u..







share|cite|improve this question















  • 4




    Your answer is not correct. You cannot bring the limit into the exponent the way you have because there are precisely $n$ copies of $a$. By moving the limit to the exponent, you’ve made the number of $a$’s constant.
    – Clayton
    Jul 31 at 23:55







  • 2




    Indeterminate form $infty - infty$ requires more study, you cannot simply say $0$.
    – GEdgar
    Aug 1 at 0:48














up vote
3
down vote

favorite












For $a> 0$, determine $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)$



My attempts : $sum_k=1^n( a^frackn^2 - 1) = ( a^frac1n^2- 1) + ( a^frac2n^2- 1)+......... +(a^fracnn^2- 1)=a^frac1n^2+ a^frac2n^2++.....+a^fracnn^2- n $



ThereFore $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= a^lim_nrightarrow inftyfrac1n^2+ a^lim_nrightarrow inftyfrac2n^2++.....+a^lim_nrightarrow inftyfracnn^2 - lim_nrightarrow infty n = lim_nrightarrow infty (a^0 + a^0 +.....+a^0) -lim_nrightarrow infty n = lim_nrightarrow infty( 1+1.....+1) -lim_nrightarrow infty n=lim_nrightarrow infty n -lim_nrightarrow infty n = 0 $



Hence $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= 0$



Is my answer is correct ??



Any hints / solution will be appreciated



thanks u..







share|cite|improve this question















  • 4




    Your answer is not correct. You cannot bring the limit into the exponent the way you have because there are precisely $n$ copies of $a$. By moving the limit to the exponent, you’ve made the number of $a$’s constant.
    – Clayton
    Jul 31 at 23:55







  • 2




    Indeterminate form $infty - infty$ requires more study, you cannot simply say $0$.
    – GEdgar
    Aug 1 at 0:48












up vote
3
down vote

favorite









up vote
3
down vote

favorite











For $a> 0$, determine $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)$



My attempts : $sum_k=1^n( a^frackn^2 - 1) = ( a^frac1n^2- 1) + ( a^frac2n^2- 1)+......... +(a^fracnn^2- 1)=a^frac1n^2+ a^frac2n^2++.....+a^fracnn^2- n $



ThereFore $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= a^lim_nrightarrow inftyfrac1n^2+ a^lim_nrightarrow inftyfrac2n^2++.....+a^lim_nrightarrow inftyfracnn^2 - lim_nrightarrow infty n = lim_nrightarrow infty (a^0 + a^0 +.....+a^0) -lim_nrightarrow infty n = lim_nrightarrow infty( 1+1.....+1) -lim_nrightarrow infty n=lim_nrightarrow infty n -lim_nrightarrow infty n = 0 $



Hence $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= 0$



Is my answer is correct ??



Any hints / solution will be appreciated



thanks u..







share|cite|improve this question











For $a> 0$, determine $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)$



My attempts : $sum_k=1^n( a^frackn^2 - 1) = ( a^frac1n^2- 1) + ( a^frac2n^2- 1)+......... +(a^fracnn^2- 1)=a^frac1n^2+ a^frac2n^2++.....+a^fracnn^2- n $



ThereFore $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= a^lim_nrightarrow inftyfrac1n^2+ a^lim_nrightarrow inftyfrac2n^2++.....+a^lim_nrightarrow inftyfracnn^2 - lim_nrightarrow infty n = lim_nrightarrow infty (a^0 + a^0 +.....+a^0) -lim_nrightarrow infty n = lim_nrightarrow infty( 1+1.....+1) -lim_nrightarrow infty n=lim_nrightarrow infty n -lim_nrightarrow infty n = 0 $



Hence $lim_nrightarrow inftysum_k=1^n( a^frackn^2 - 1)= 0$



Is my answer is correct ??



Any hints / solution will be appreciated



thanks u..









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 31 at 23:26









stupid

52418




52418







  • 4




    Your answer is not correct. You cannot bring the limit into the exponent the way you have because there are precisely $n$ copies of $a$. By moving the limit to the exponent, you’ve made the number of $a$’s constant.
    – Clayton
    Jul 31 at 23:55







  • 2




    Indeterminate form $infty - infty$ requires more study, you cannot simply say $0$.
    – GEdgar
    Aug 1 at 0:48












  • 4




    Your answer is not correct. You cannot bring the limit into the exponent the way you have because there are precisely $n$ copies of $a$. By moving the limit to the exponent, you’ve made the number of $a$’s constant.
    – Clayton
    Jul 31 at 23:55







  • 2




    Indeterminate form $infty - infty$ requires more study, you cannot simply say $0$.
    – GEdgar
    Aug 1 at 0:48







4




4




Your answer is not correct. You cannot bring the limit into the exponent the way you have because there are precisely $n$ copies of $a$. By moving the limit to the exponent, you’ve made the number of $a$’s constant.
– Clayton
Jul 31 at 23:55





Your answer is not correct. You cannot bring the limit into the exponent the way you have because there are precisely $n$ copies of $a$. By moving the limit to the exponent, you’ve made the number of $a$’s constant.
– Clayton
Jul 31 at 23:55





2




2




Indeterminate form $infty - infty$ requires more study, you cannot simply say $0$.
– GEdgar
Aug 1 at 0:48




Indeterminate form $infty - infty$ requires more study, you cannot simply say $0$.
– GEdgar
Aug 1 at 0:48










1 Answer
1






active

oldest

votes

















up vote
3
down vote



accepted










Intuition:
since $e^u = 1+u + o(u)$ when $uto 0$ and
$0 leq frackn^2ln a leq fracln an xrightarrow[ntoinfty] 0$ for every $1leq kleq n$, we "expect" to have
$$
sum_k=1^n( a^frackn^2-1)
= sum_k=1^n( e^frackn^2ln a-1) approx sum_k=1^n frackn^2ln a = ln acdot fracn(n+1)2n^2xrightarrow[ntoinfty] fracln a2 tag1
$$
so we should try and make this rigorous. (Sanity check: this is consistent with $a=1$, for which we do get $0$.)



Side note. Easy lower bound: using the standard inequality (proven e.g. by convexity) $e^x geq 1+x$ for all $x$, we have
$$
sum_k=1^n( e^frackn^2ln a-1) geq sum_k=1^nfrackn^2ln a = fracln a2cdot fracn(n+1)n^2 tag2
$$
and as mentioned we have $lim_ntoinfty fracln a2cdot fracn(n+1)n^2 = fracln a2$. So we have that the limit is at least $fracln a2$... That was the easy part.



Proof of (1).
We can write
$$beginalign
sum_k=1^n( e^frackn^2ln a-1)
&=sum_k=1^nunderbracebig(e^fracln an^2big) _=alpha^k - n = alphacdot frac1-alpha^n1-alpha - n
= e^fracln an^2frac1-e^fracln an1-e^fracln an^2 - n \
&= left(1+ oleft(frac1nright)right)cdot fracfracln an+fracln^2 a2n^2+o(frac1n^2)fracln an^2+o(frac1n^2) - n\
&= left(1+ oleft(frac1nright)right)cdot fracn+fracln a2+o(1)1+o(1) - n\
&= n+fracln a2+o(1) - n\
&= fracln a2+o(1) xrightarrow[ntoinfty] fracln a2 tag3
endalign$$
where we used the Taylor series of $e^u$ as $uto 0$, $e^u = 1+u+fracu^22+o(u)$, and that of $frac11+u = 1-u+o(u)$. This last (3) gives us the expected limit, $fracln a2$.






share|cite|improve this answer























  • beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
    – stupid
    Aug 1 at 0:20










  • If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
    – Paramanand Singh
    Aug 1 at 7:49










  • @ParamanandSingh this is the limit I showed, yes :)
    – Clement C.
    Aug 1 at 13:37










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868581%2ffor-a-0-determine-lim-n-rightarrow-infty-sum-k-1n-a-frackn2%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
3
down vote



accepted










Intuition:
since $e^u = 1+u + o(u)$ when $uto 0$ and
$0 leq frackn^2ln a leq fracln an xrightarrow[ntoinfty] 0$ for every $1leq kleq n$, we "expect" to have
$$
sum_k=1^n( a^frackn^2-1)
= sum_k=1^n( e^frackn^2ln a-1) approx sum_k=1^n frackn^2ln a = ln acdot fracn(n+1)2n^2xrightarrow[ntoinfty] fracln a2 tag1
$$
so we should try and make this rigorous. (Sanity check: this is consistent with $a=1$, for which we do get $0$.)



Side note. Easy lower bound: using the standard inequality (proven e.g. by convexity) $e^x geq 1+x$ for all $x$, we have
$$
sum_k=1^n( e^frackn^2ln a-1) geq sum_k=1^nfrackn^2ln a = fracln a2cdot fracn(n+1)n^2 tag2
$$
and as mentioned we have $lim_ntoinfty fracln a2cdot fracn(n+1)n^2 = fracln a2$. So we have that the limit is at least $fracln a2$... That was the easy part.



Proof of (1).
We can write
$$beginalign
sum_k=1^n( e^frackn^2ln a-1)
&=sum_k=1^nunderbracebig(e^fracln an^2big) _=alpha^k - n = alphacdot frac1-alpha^n1-alpha - n
= e^fracln an^2frac1-e^fracln an1-e^fracln an^2 - n \
&= left(1+ oleft(frac1nright)right)cdot fracfracln an+fracln^2 a2n^2+o(frac1n^2)fracln an^2+o(frac1n^2) - n\
&= left(1+ oleft(frac1nright)right)cdot fracn+fracln a2+o(1)1+o(1) - n\
&= n+fracln a2+o(1) - n\
&= fracln a2+o(1) xrightarrow[ntoinfty] fracln a2 tag3
endalign$$
where we used the Taylor series of $e^u$ as $uto 0$, $e^u = 1+u+fracu^22+o(u)$, and that of $frac11+u = 1-u+o(u)$. This last (3) gives us the expected limit, $fracln a2$.






share|cite|improve this answer























  • beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
    – stupid
    Aug 1 at 0:20










  • If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
    – Paramanand Singh
    Aug 1 at 7:49










  • @ParamanandSingh this is the limit I showed, yes :)
    – Clement C.
    Aug 1 at 13:37














up vote
3
down vote



accepted










Intuition:
since $e^u = 1+u + o(u)$ when $uto 0$ and
$0 leq frackn^2ln a leq fracln an xrightarrow[ntoinfty] 0$ for every $1leq kleq n$, we "expect" to have
$$
sum_k=1^n( a^frackn^2-1)
= sum_k=1^n( e^frackn^2ln a-1) approx sum_k=1^n frackn^2ln a = ln acdot fracn(n+1)2n^2xrightarrow[ntoinfty] fracln a2 tag1
$$
so we should try and make this rigorous. (Sanity check: this is consistent with $a=1$, for which we do get $0$.)



Side note. Easy lower bound: using the standard inequality (proven e.g. by convexity) $e^x geq 1+x$ for all $x$, we have
$$
sum_k=1^n( e^frackn^2ln a-1) geq sum_k=1^nfrackn^2ln a = fracln a2cdot fracn(n+1)n^2 tag2
$$
and as mentioned we have $lim_ntoinfty fracln a2cdot fracn(n+1)n^2 = fracln a2$. So we have that the limit is at least $fracln a2$... That was the easy part.



Proof of (1).
We can write
$$beginalign
sum_k=1^n( e^frackn^2ln a-1)
&=sum_k=1^nunderbracebig(e^fracln an^2big) _=alpha^k - n = alphacdot frac1-alpha^n1-alpha - n
= e^fracln an^2frac1-e^fracln an1-e^fracln an^2 - n \
&= left(1+ oleft(frac1nright)right)cdot fracfracln an+fracln^2 a2n^2+o(frac1n^2)fracln an^2+o(frac1n^2) - n\
&= left(1+ oleft(frac1nright)right)cdot fracn+fracln a2+o(1)1+o(1) - n\
&= n+fracln a2+o(1) - n\
&= fracln a2+o(1) xrightarrow[ntoinfty] fracln a2 tag3
endalign$$
where we used the Taylor series of $e^u$ as $uto 0$, $e^u = 1+u+fracu^22+o(u)$, and that of $frac11+u = 1-u+o(u)$. This last (3) gives us the expected limit, $fracln a2$.






share|cite|improve this answer























  • beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
    – stupid
    Aug 1 at 0:20










  • If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
    – Paramanand Singh
    Aug 1 at 7:49










  • @ParamanandSingh this is the limit I showed, yes :)
    – Clement C.
    Aug 1 at 13:37












up vote
3
down vote



accepted







up vote
3
down vote



accepted






Intuition:
since $e^u = 1+u + o(u)$ when $uto 0$ and
$0 leq frackn^2ln a leq fracln an xrightarrow[ntoinfty] 0$ for every $1leq kleq n$, we "expect" to have
$$
sum_k=1^n( a^frackn^2-1)
= sum_k=1^n( e^frackn^2ln a-1) approx sum_k=1^n frackn^2ln a = ln acdot fracn(n+1)2n^2xrightarrow[ntoinfty] fracln a2 tag1
$$
so we should try and make this rigorous. (Sanity check: this is consistent with $a=1$, for which we do get $0$.)



Side note. Easy lower bound: using the standard inequality (proven e.g. by convexity) $e^x geq 1+x$ for all $x$, we have
$$
sum_k=1^n( e^frackn^2ln a-1) geq sum_k=1^nfrackn^2ln a = fracln a2cdot fracn(n+1)n^2 tag2
$$
and as mentioned we have $lim_ntoinfty fracln a2cdot fracn(n+1)n^2 = fracln a2$. So we have that the limit is at least $fracln a2$... That was the easy part.



Proof of (1).
We can write
$$beginalign
sum_k=1^n( e^frackn^2ln a-1)
&=sum_k=1^nunderbracebig(e^fracln an^2big) _=alpha^k - n = alphacdot frac1-alpha^n1-alpha - n
= e^fracln an^2frac1-e^fracln an1-e^fracln an^2 - n \
&= left(1+ oleft(frac1nright)right)cdot fracfracln an+fracln^2 a2n^2+o(frac1n^2)fracln an^2+o(frac1n^2) - n\
&= left(1+ oleft(frac1nright)right)cdot fracn+fracln a2+o(1)1+o(1) - n\
&= n+fracln a2+o(1) - n\
&= fracln a2+o(1) xrightarrow[ntoinfty] fracln a2 tag3
endalign$$
where we used the Taylor series of $e^u$ as $uto 0$, $e^u = 1+u+fracu^22+o(u)$, and that of $frac11+u = 1-u+o(u)$. This last (3) gives us the expected limit, $fracln a2$.






share|cite|improve this answer















Intuition:
since $e^u = 1+u + o(u)$ when $uto 0$ and
$0 leq frackn^2ln a leq fracln an xrightarrow[ntoinfty] 0$ for every $1leq kleq n$, we "expect" to have
$$
sum_k=1^n( a^frackn^2-1)
= sum_k=1^n( e^frackn^2ln a-1) approx sum_k=1^n frackn^2ln a = ln acdot fracn(n+1)2n^2xrightarrow[ntoinfty] fracln a2 tag1
$$
so we should try and make this rigorous. (Sanity check: this is consistent with $a=1$, for which we do get $0$.)



Side note. Easy lower bound: using the standard inequality (proven e.g. by convexity) $e^x geq 1+x$ for all $x$, we have
$$
sum_k=1^n( e^frackn^2ln a-1) geq sum_k=1^nfrackn^2ln a = fracln a2cdot fracn(n+1)n^2 tag2
$$
and as mentioned we have $lim_ntoinfty fracln a2cdot fracn(n+1)n^2 = fracln a2$. So we have that the limit is at least $fracln a2$... That was the easy part.



Proof of (1).
We can write
$$beginalign
sum_k=1^n( e^frackn^2ln a-1)
&=sum_k=1^nunderbracebig(e^fracln an^2big) _=alpha^k - n = alphacdot frac1-alpha^n1-alpha - n
= e^fracln an^2frac1-e^fracln an1-e^fracln an^2 - n \
&= left(1+ oleft(frac1nright)right)cdot fracfracln an+fracln^2 a2n^2+o(frac1n^2)fracln an^2+o(frac1n^2) - n\
&= left(1+ oleft(frac1nright)right)cdot fracn+fracln a2+o(1)1+o(1) - n\
&= n+fracln a2+o(1) - n\
&= fracln a2+o(1) xrightarrow[ntoinfty] fracln a2 tag3
endalign$$
where we used the Taylor series of $e^u$ as $uto 0$, $e^u = 1+u+fracu^22+o(u)$, and that of $frac11+u = 1-u+o(u)$. This last (3) gives us the expected limit, $fracln a2$.







share|cite|improve this answer















share|cite|improve this answer



share|cite|improve this answer








edited Aug 1 at 0:11


























answered Aug 1 at 0:04









Clement C.

46.9k33682




46.9k33682











  • beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
    – stupid
    Aug 1 at 0:20










  • If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
    – Paramanand Singh
    Aug 1 at 7:49










  • @ParamanandSingh this is the limit I showed, yes :)
    – Clement C.
    Aug 1 at 13:37
















  • beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
    – stupid
    Aug 1 at 0:20










  • If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
    – Paramanand Singh
    Aug 1 at 7:49










  • @ParamanandSingh this is the limit I showed, yes :)
    – Clement C.
    Aug 1 at 13:37















beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
– stupid
Aug 1 at 0:20




beautiful solution and thanks u actually $a^frackn^2-1= e^frackn^2ln a-1$ that doesnot come in my minds......Now i got it... thanks u @Clement C.
– stupid
Aug 1 at 0:20












If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
– Paramanand Singh
Aug 1 at 7:49




If $alpha - 1=b$ then the expression under limit is $((1+b)^n+1-1-b-nb)/b$ or $n(n+1)b/2+dots $ and this tends to $(log a) /2$.
– Paramanand Singh
Aug 1 at 7:49












@ParamanandSingh this is the limit I showed, yes :)
– Clement C.
Aug 1 at 13:37




@ParamanandSingh this is the limit I showed, yes :)
– Clement C.
Aug 1 at 13:37












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2868581%2ffor-a-0-determine-lim-n-rightarrow-infty-sum-k-1n-a-frackn2%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?