Give an asymptotic developement of $I_n=int_0^1 (x^n-x^n-2)ln(1+x^n)dx.$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $$I_n=int_0^1 (x^n+x^n-2)ln(1+x^n)dx.$$



Give an asymptotic developement of $I_n$ at order $O(frac1n^3)$ when $nto infty $.



I wanted to use the fact that $$sum_k=1^infty frac(-1)^k+1 x^knk,$$
and thus $$I_n=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx,$$
but since the convergence of this series is a priori not uniform and the coefficient are not positive on $[0,1]$ I can't permute the sum and the integral.



Any other idea ?







share|cite|improve this question

















  • 1




    @Michael: If $f_nto f$ uniformly on $[0,r]$ for all $r<1$ but not on $[0,1[$, then$$lim_nto infty lim_rto 1int_0^r f_n=lim_rto 1lim_nto infty int_0^r f_n$$ is false a priori.
    – Surb
    Jul 21 at 22:38











  • Maybe you are missing the left hand side for the second equation. Maybe you are missing $dx$ for the third equation. If so, please revise the question.
    – norio
    Jul 21 at 22:42










  • @Surb In our case it is true, because the sum of the intergrals convergences uniformly.
    – Michael
    Jul 22 at 9:07







  • 1




    @Surb $sum_k=1^infty int_0^r(x^n+x^n-2)frac(-1)^k+1kx^kndx=sum_k=1^inftyfrac(-1)^k+1k(dfracr^n(k+1)+1n(k+1)+1+dfracr^n(k+1)-1n(k+1)-1)$. The right hand side converges uniformly in $r$, because $rleq 1$ and you essentially have the sum of $1/k(k+1)$.
    – Michael
    Jul 22 at 9:32







  • 1




    The title and question do not match.
    – zhw.
    Jul 23 at 1:07














up vote
1
down vote

favorite












Let $$I_n=int_0^1 (x^n+x^n-2)ln(1+x^n)dx.$$



Give an asymptotic developement of $I_n$ at order $O(frac1n^3)$ when $nto infty $.



I wanted to use the fact that $$sum_k=1^infty frac(-1)^k+1 x^knk,$$
and thus $$I_n=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx,$$
but since the convergence of this series is a priori not uniform and the coefficient are not positive on $[0,1]$ I can't permute the sum and the integral.



Any other idea ?







share|cite|improve this question

















  • 1




    @Michael: If $f_nto f$ uniformly on $[0,r]$ for all $r<1$ but not on $[0,1[$, then$$lim_nto infty lim_rto 1int_0^r f_n=lim_rto 1lim_nto infty int_0^r f_n$$ is false a priori.
    – Surb
    Jul 21 at 22:38











  • Maybe you are missing the left hand side for the second equation. Maybe you are missing $dx$ for the third equation. If so, please revise the question.
    – norio
    Jul 21 at 22:42










  • @Surb In our case it is true, because the sum of the intergrals convergences uniformly.
    – Michael
    Jul 22 at 9:07







  • 1




    @Surb $sum_k=1^infty int_0^r(x^n+x^n-2)frac(-1)^k+1kx^kndx=sum_k=1^inftyfrac(-1)^k+1k(dfracr^n(k+1)+1n(k+1)+1+dfracr^n(k+1)-1n(k+1)-1)$. The right hand side converges uniformly in $r$, because $rleq 1$ and you essentially have the sum of $1/k(k+1)$.
    – Michael
    Jul 22 at 9:32







  • 1




    The title and question do not match.
    – zhw.
    Jul 23 at 1:07












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $$I_n=int_0^1 (x^n+x^n-2)ln(1+x^n)dx.$$



Give an asymptotic developement of $I_n$ at order $O(frac1n^3)$ when $nto infty $.



I wanted to use the fact that $$sum_k=1^infty frac(-1)^k+1 x^knk,$$
and thus $$I_n=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx,$$
but since the convergence of this series is a priori not uniform and the coefficient are not positive on $[0,1]$ I can't permute the sum and the integral.



Any other idea ?







share|cite|improve this question













Let $$I_n=int_0^1 (x^n+x^n-2)ln(1+x^n)dx.$$



Give an asymptotic developement of $I_n$ at order $O(frac1n^3)$ when $nto infty $.



I wanted to use the fact that $$sum_k=1^infty frac(-1)^k+1 x^knk,$$
and thus $$I_n=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx,$$
but since the convergence of this series is a priori not uniform and the coefficient are not positive on $[0,1]$ I can't permute the sum and the integral.



Any other idea ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 21 at 23:03









Surb

36.3k84274




36.3k84274









asked Jul 21 at 20:26









user386627

714214




714214







  • 1




    @Michael: If $f_nto f$ uniformly on $[0,r]$ for all $r<1$ but not on $[0,1[$, then$$lim_nto infty lim_rto 1int_0^r f_n=lim_rto 1lim_nto infty int_0^r f_n$$ is false a priori.
    – Surb
    Jul 21 at 22:38











  • Maybe you are missing the left hand side for the second equation. Maybe you are missing $dx$ for the third equation. If so, please revise the question.
    – norio
    Jul 21 at 22:42










  • @Surb In our case it is true, because the sum of the intergrals convergences uniformly.
    – Michael
    Jul 22 at 9:07







  • 1




    @Surb $sum_k=1^infty int_0^r(x^n+x^n-2)frac(-1)^k+1kx^kndx=sum_k=1^inftyfrac(-1)^k+1k(dfracr^n(k+1)+1n(k+1)+1+dfracr^n(k+1)-1n(k+1)-1)$. The right hand side converges uniformly in $r$, because $rleq 1$ and you essentially have the sum of $1/k(k+1)$.
    – Michael
    Jul 22 at 9:32







  • 1




    The title and question do not match.
    – zhw.
    Jul 23 at 1:07












  • 1




    @Michael: If $f_nto f$ uniformly on $[0,r]$ for all $r<1$ but not on $[0,1[$, then$$lim_nto infty lim_rto 1int_0^r f_n=lim_rto 1lim_nto infty int_0^r f_n$$ is false a priori.
    – Surb
    Jul 21 at 22:38











  • Maybe you are missing the left hand side for the second equation. Maybe you are missing $dx$ for the third equation. If so, please revise the question.
    – norio
    Jul 21 at 22:42










  • @Surb In our case it is true, because the sum of the intergrals convergences uniformly.
    – Michael
    Jul 22 at 9:07







  • 1




    @Surb $sum_k=1^infty int_0^r(x^n+x^n-2)frac(-1)^k+1kx^kndx=sum_k=1^inftyfrac(-1)^k+1k(dfracr^n(k+1)+1n(k+1)+1+dfracr^n(k+1)-1n(k+1)-1)$. The right hand side converges uniformly in $r$, because $rleq 1$ and you essentially have the sum of $1/k(k+1)$.
    – Michael
    Jul 22 at 9:32







  • 1




    The title and question do not match.
    – zhw.
    Jul 23 at 1:07







1




1




@Michael: If $f_nto f$ uniformly on $[0,r]$ for all $r<1$ but not on $[0,1[$, then$$lim_nto infty lim_rto 1int_0^r f_n=lim_rto 1lim_nto infty int_0^r f_n$$ is false a priori.
– Surb
Jul 21 at 22:38





@Michael: If $f_nto f$ uniformly on $[0,r]$ for all $r<1$ but not on $[0,1[$, then$$lim_nto infty lim_rto 1int_0^r f_n=lim_rto 1lim_nto infty int_0^r f_n$$ is false a priori.
– Surb
Jul 21 at 22:38













Maybe you are missing the left hand side for the second equation. Maybe you are missing $dx$ for the third equation. If so, please revise the question.
– norio
Jul 21 at 22:42




Maybe you are missing the left hand side for the second equation. Maybe you are missing $dx$ for the third equation. If so, please revise the question.
– norio
Jul 21 at 22:42












@Surb In our case it is true, because the sum of the intergrals convergences uniformly.
– Michael
Jul 22 at 9:07





@Surb In our case it is true, because the sum of the intergrals convergences uniformly.
– Michael
Jul 22 at 9:07





1




1




@Surb $sum_k=1^infty int_0^r(x^n+x^n-2)frac(-1)^k+1kx^kndx=sum_k=1^inftyfrac(-1)^k+1k(dfracr^n(k+1)+1n(k+1)+1+dfracr^n(k+1)-1n(k+1)-1)$. The right hand side converges uniformly in $r$, because $rleq 1$ and you essentially have the sum of $1/k(k+1)$.
– Michael
Jul 22 at 9:32





@Surb $sum_k=1^infty int_0^r(x^n+x^n-2)frac(-1)^k+1kx^kndx=sum_k=1^inftyfrac(-1)^k+1k(dfracr^n(k+1)+1n(k+1)+1+dfracr^n(k+1)-1n(k+1)-1)$. The right hand side converges uniformly in $r$, because $rleq 1$ and you essentially have the sum of $1/k(k+1)$.
– Michael
Jul 22 at 9:32





1




1




The title and question do not match.
– zhw.
Jul 23 at 1:07




The title and question do not match.
– zhw.
Jul 23 at 1:07










5 Answers
5






active

oldest

votes

















up vote
1
down vote













If $, f_n(x) := (x^n - x^n-2) log(1+x^n), ,$ then
$, n f_n(e^-x/n) to -2xe^-xlog(1+e^-x) ,$ as $, nto infty. ,$
Use $, x = e^-t/n ,$ in $, I_n := int_0^1! f_n(x) , dx ,$ with $, dx = -e^-t/nt/n ,$ so
$, n^2I_n !=! int_0^infty! nf_n(e^-t/n) e^-t/nt, dt. ,$






share|cite|improve this answer























  • Sorry, but I don't really see in what it help...
    – user386627
    Jul 21 at 21:42

















up vote
0
down vote













Assuming that
you can reverse the order,



$beginarray\
I_n
&=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx\
&=sum_k=1^infty int_0^1(x^n+x^n-2)frac(-1)^k+1kx^kndx\
&=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n+x^n-2)x^kndx\
&=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n(k+1)+x^n(k+1)-2)dx\
&=sum_k=1^inftyfrac(-1)^k+1k(frac1n(k+1)+1+frac1n(k+1)-1)\
&=sum_k=1^inftyfrac(-1)^k+1k(frac2n(k+1)n^2(k+1)^2-1)\
&=sum_k=1^inftyfrac(-1)^k+1kn(frac2(k+1)(k+1)^2-1/n^2)\
&=sum_k=1^inftyfrac(-1)^k+1k(k+1)n(frac21-1/(n^2(k+1)^2))\
&=frac2nsum_k=1^inftyfrac(-1)^k+1k(k+1)sum_m=0^inftyfrac1n^2m(k+1)^2m\
&=frac2nsum_m=0^inftyfrac1n^2msum_k=1^inftyfrac(-1)^k+1k(k+1)frac1(k+1)^2m\
&=2sum_m=0^inftyfrac1n^2m+1sum_k=1^inftyfrac(-1)^k+1k(k+1)^2m+1\
&=2(fracln(4/e)n-frac0.110304071913...n^3+O(frac1n^5))
qquadtext(according to Wolfy)\
endarray
$



Note:
The Inverse Symbolic Calculator
did not find anything for
0.110304071913.






share|cite|improve this answer




























    up vote
    0
    down vote













    There is a difference in title $(colorred-)$ and body $(colorred+)$; so, I worked both cases.



    Let us consider first
    $$int x^a log left(1+x^bright),dx=fracx^a+1 log left(1+x^bright)a+1-frac b1+a int fracx^a+b1+x^b,dx$$
    $$int fracx^a+b1+x^b,dx=fracx^a+b+1a+b+1 ,,,
    _2F_1left(1,fraca+b+1b;fraca+2b+1b;-x^bright)$$ Using the given bounds and simplifying leads to
    $$K_a,b=int_0^1 x^a log left(1+x^bright),dx=fraclog (2)-Phi left(-1,1,fraca+b+1bright)a+1qquad textif qquad Re(b)>0$$ where appears the Hurwitz-Lerch transcendent function.



    So,
    $$I_n=int_0^1 (x^n-x^n-2)ln(1+x^n),dx=fraclog (2)-Phi left(-1,1,frac2 n+1nright)n+1-fraclog (2)-Phi
    left(-1,1,frac2 n-1nright)n-1$$
    $$J_n=int_0^1 (x^n+x^n-2)ln(1+x^n),dx=fraclog (2)-Phi
    left(-1,1,frac2 n+1nright)n+1+fraclog (2)-Phi left(-1,1,frac2 n-1nright)n-1$$



    Now, consider the expansion of $Phi (-1,1,2+epsilon)$; it is
    $$(1-log (2))+left(fracpi ^212-1right) epsilon +left(1-frac3 zeta
    (3)4right) epsilon ^2+left(frac7 pi ^4720-1right) epsilon
    ^3+left(1-frac15 zeta (5)16right) epsilon ^4+Oleft(epsilon ^5right)$$ Making $ epsilon=pm frac 1n$ and continuing with Taylor, this gives
    $$I_n=frac4-fracpi ^26-4 log (2)n^2+frac-540 zeta (3)+2880-60 pi ^2-7 pi
    ^4-1440 log (2)360 n^4+Oleft(frac1n^5right)$$



    $$J_n=frac4 log (2)-2n+frac9 zeta (3)-36+pi ^2+24 log (2)6
    n^3+Oleft(frac1n^5right)$$



    For $J_n$, this is the same result as in marty cohen's answer, since
    $$frac9 zeta (3)-36+pi ^2+24 log (2)6=2 times 0.110304071913700 $$



    This seems to work quite well even for small values of $n$ as shown in the table below
    $$left(
    beginarrayccccc
    n & I_n^exact & I_n^approx & J_n^exact & J_n^approx\
    2 & -0.1120487783 & -0.1115478099 & 0.4158382364 & 0.4138703791 \
    3 & -0.0478495232 & -0.0478071470 & 0.2659498411 & 0.2657002461 \
    4 & -0.0265505658 & -0.0265431189 & 0.1966526582 & 0.1965941828 \
    5 & -0.0168863305 & -0.0168843897 & 0.1563016585 & 0.1562826096 \
    6 & -0.0116869861 & -0.0116863381 & 0.1297937520 & 0.1297861210 \
    7 & -0.0085688906 & -0.0085686341 & 0.1110165137 & 0.1110129899 \
    8 & -0.0065519051 & -0.0065517901 & 0.0970062707 & 0.0970044656 \
    9 & -0.0051721371 & -0.0051720804 & 0.0861468097 & 0.0861458088 \
    10 & -0.0041867254 & -0.0041866953 & 0.0774800710 & 0.0774794804
    endarray
    right)$$






    share|cite|improve this answer






























      up vote
      0
      down vote













      After using $,t:=x^n,$ we get:



      $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (cosh z)|_z=fracln tn ln(1+t) dx$



      $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^0](cosh z)|_z=fracln tn ln(1+t) dx = frac2 (ln 4 - 1)n $



      $displaystyle intlimits_0^1 (x^n-x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (sinh z)|_z=fracln tn ln(1+t) dx $



      $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^1](sinh z)|_z=fracln tn ln(1+t) dx = frac4(1 - ln 2) - fracpi^26n^2 $



      You can use more elements of $,cosh,$ or $,sinh,$ to get closer to your integral.



      Example:



      $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx approx frac2nintlimits_0^1 [z^0+z^2](cosh z)|_z=fracln tn ln(1+t) dx $



      $hspace3cmdisplaystyle =fracln 16 - 2n + frac1n^3left(frac3zeta(3)2+fracpi^26+ln 16 - 6right)$






      share|cite|improve this answer






























        up vote
        0
        down vote













        If $f(n, x) = O(|g(n, x)|)$ uniformly in $x$ on $a < x < b$ and $f$ and $g$ are measurable, then $int_a^b f(n, x) dx = O(int_a^b |g(n, x)| dx)$. We have
        $$J_n = int_0^1 x^n ln(1 + x^n) dx =
        frac 1 n int_0^1 xi^1/n ln(1 + xi) dxi, \
        |xi^1/n - 1| leq frac 1 n |! ln xi| quad
        textwhen 0 < n land 0 < xi < 1, \
        left| J_n - frac 1 n int_0^1 ln(1 + xi) dxi right| leq
        -frac 1 n^2 int_0^1 ln xi ln(1 + xi) dxi,$$
        giving the leading term in the expansion. The complete asymptotic series for $J_n$ in powers of $n$ is
        $$J_n sim sum_k=1^infty
        int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!.$$
        Similarly, for
        $$K_n = int_0^1 x^n-2 ln(1 + x^n) dx =
        frac 1 n int_0^1 xi^-1/n ln(1 + xi) dxi,$$
        we can take
        $$|xi^-1/n - 1| leq frac 2 n sqrt xi quad
        textwhen 2 < n land 0 < xi < 1.$$
        The complete asymptotic series for $K_n$ is
        $$K_n sim sum_k=1^infty (-1)^k-1
        int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!,$$
        which is formally $-J_-n$.






        share|cite|improve this answer























          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858856%2fgive-an-asymptotic-developement-of-i-n-int-01-xn-xn-2-ln1xndx%23new-answer', 'question_page');

          );

          Post as a guest






























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          If $, f_n(x) := (x^n - x^n-2) log(1+x^n), ,$ then
          $, n f_n(e^-x/n) to -2xe^-xlog(1+e^-x) ,$ as $, nto infty. ,$
          Use $, x = e^-t/n ,$ in $, I_n := int_0^1! f_n(x) , dx ,$ with $, dx = -e^-t/nt/n ,$ so
          $, n^2I_n !=! int_0^infty! nf_n(e^-t/n) e^-t/nt, dt. ,$






          share|cite|improve this answer























          • Sorry, but I don't really see in what it help...
            – user386627
            Jul 21 at 21:42














          up vote
          1
          down vote













          If $, f_n(x) := (x^n - x^n-2) log(1+x^n), ,$ then
          $, n f_n(e^-x/n) to -2xe^-xlog(1+e^-x) ,$ as $, nto infty. ,$
          Use $, x = e^-t/n ,$ in $, I_n := int_0^1! f_n(x) , dx ,$ with $, dx = -e^-t/nt/n ,$ so
          $, n^2I_n !=! int_0^infty! nf_n(e^-t/n) e^-t/nt, dt. ,$






          share|cite|improve this answer























          • Sorry, but I don't really see in what it help...
            – user386627
            Jul 21 at 21:42












          up vote
          1
          down vote










          up vote
          1
          down vote









          If $, f_n(x) := (x^n - x^n-2) log(1+x^n), ,$ then
          $, n f_n(e^-x/n) to -2xe^-xlog(1+e^-x) ,$ as $, nto infty. ,$
          Use $, x = e^-t/n ,$ in $, I_n := int_0^1! f_n(x) , dx ,$ with $, dx = -e^-t/nt/n ,$ so
          $, n^2I_n !=! int_0^infty! nf_n(e^-t/n) e^-t/nt, dt. ,$






          share|cite|improve this answer















          If $, f_n(x) := (x^n - x^n-2) log(1+x^n), ,$ then
          $, n f_n(e^-x/n) to -2xe^-xlog(1+e^-x) ,$ as $, nto infty. ,$
          Use $, x = e^-t/n ,$ in $, I_n := int_0^1! f_n(x) , dx ,$ with $, dx = -e^-t/nt/n ,$ so
          $, n^2I_n !=! int_0^infty! nf_n(e^-t/n) e^-t/nt, dt. ,$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 21 at 22:27


























          answered Jul 21 at 21:30









          Somos

          11.5k1933




          11.5k1933











          • Sorry, but I don't really see in what it help...
            – user386627
            Jul 21 at 21:42
















          • Sorry, but I don't really see in what it help...
            – user386627
            Jul 21 at 21:42















          Sorry, but I don't really see in what it help...
          – user386627
          Jul 21 at 21:42




          Sorry, but I don't really see in what it help...
          – user386627
          Jul 21 at 21:42










          up vote
          0
          down vote













          Assuming that
          you can reverse the order,



          $beginarray\
          I_n
          &=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx\
          &=sum_k=1^infty int_0^1(x^n+x^n-2)frac(-1)^k+1kx^kndx\
          &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n+x^n-2)x^kndx\
          &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n(k+1)+x^n(k+1)-2)dx\
          &=sum_k=1^inftyfrac(-1)^k+1k(frac1n(k+1)+1+frac1n(k+1)-1)\
          &=sum_k=1^inftyfrac(-1)^k+1k(frac2n(k+1)n^2(k+1)^2-1)\
          &=sum_k=1^inftyfrac(-1)^k+1kn(frac2(k+1)(k+1)^2-1/n^2)\
          &=sum_k=1^inftyfrac(-1)^k+1k(k+1)n(frac21-1/(n^2(k+1)^2))\
          &=frac2nsum_k=1^inftyfrac(-1)^k+1k(k+1)sum_m=0^inftyfrac1n^2m(k+1)^2m\
          &=frac2nsum_m=0^inftyfrac1n^2msum_k=1^inftyfrac(-1)^k+1k(k+1)frac1(k+1)^2m\
          &=2sum_m=0^inftyfrac1n^2m+1sum_k=1^inftyfrac(-1)^k+1k(k+1)^2m+1\
          &=2(fracln(4/e)n-frac0.110304071913...n^3+O(frac1n^5))
          qquadtext(according to Wolfy)\
          endarray
          $



          Note:
          The Inverse Symbolic Calculator
          did not find anything for
          0.110304071913.






          share|cite|improve this answer

























            up vote
            0
            down vote













            Assuming that
            you can reverse the order,



            $beginarray\
            I_n
            &=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx\
            &=sum_k=1^infty int_0^1(x^n+x^n-2)frac(-1)^k+1kx^kndx\
            &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n+x^n-2)x^kndx\
            &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n(k+1)+x^n(k+1)-2)dx\
            &=sum_k=1^inftyfrac(-1)^k+1k(frac1n(k+1)+1+frac1n(k+1)-1)\
            &=sum_k=1^inftyfrac(-1)^k+1k(frac2n(k+1)n^2(k+1)^2-1)\
            &=sum_k=1^inftyfrac(-1)^k+1kn(frac2(k+1)(k+1)^2-1/n^2)\
            &=sum_k=1^inftyfrac(-1)^k+1k(k+1)n(frac21-1/(n^2(k+1)^2))\
            &=frac2nsum_k=1^inftyfrac(-1)^k+1k(k+1)sum_m=0^inftyfrac1n^2m(k+1)^2m\
            &=frac2nsum_m=0^inftyfrac1n^2msum_k=1^inftyfrac(-1)^k+1k(k+1)frac1(k+1)^2m\
            &=2sum_m=0^inftyfrac1n^2m+1sum_k=1^inftyfrac(-1)^k+1k(k+1)^2m+1\
            &=2(fracln(4/e)n-frac0.110304071913...n^3+O(frac1n^5))
            qquadtext(according to Wolfy)\
            endarray
            $



            Note:
            The Inverse Symbolic Calculator
            did not find anything for
            0.110304071913.






            share|cite|improve this answer























              up vote
              0
              down vote










              up vote
              0
              down vote









              Assuming that
              you can reverse the order,



              $beginarray\
              I_n
              &=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx\
              &=sum_k=1^infty int_0^1(x^n+x^n-2)frac(-1)^k+1kx^kndx\
              &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n+x^n-2)x^kndx\
              &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n(k+1)+x^n(k+1)-2)dx\
              &=sum_k=1^inftyfrac(-1)^k+1k(frac1n(k+1)+1+frac1n(k+1)-1)\
              &=sum_k=1^inftyfrac(-1)^k+1k(frac2n(k+1)n^2(k+1)^2-1)\
              &=sum_k=1^inftyfrac(-1)^k+1kn(frac2(k+1)(k+1)^2-1/n^2)\
              &=sum_k=1^inftyfrac(-1)^k+1k(k+1)n(frac21-1/(n^2(k+1)^2))\
              &=frac2nsum_k=1^inftyfrac(-1)^k+1k(k+1)sum_m=0^inftyfrac1n^2m(k+1)^2m\
              &=frac2nsum_m=0^inftyfrac1n^2msum_k=1^inftyfrac(-1)^k+1k(k+1)frac1(k+1)^2m\
              &=2sum_m=0^inftyfrac1n^2m+1sum_k=1^inftyfrac(-1)^k+1k(k+1)^2m+1\
              &=2(fracln(4/e)n-frac0.110304071913...n^3+O(frac1n^5))
              qquadtext(according to Wolfy)\
              endarray
              $



              Note:
              The Inverse Symbolic Calculator
              did not find anything for
              0.110304071913.






              share|cite|improve this answer













              Assuming that
              you can reverse the order,



              $beginarray\
              I_n
              &=int_0^1(x^n+x^n-2)sum_k=1^infty frac(-1)^k+1kx^kndx\
              &=sum_k=1^infty int_0^1(x^n+x^n-2)frac(-1)^k+1kx^kndx\
              &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n+x^n-2)x^kndx\
              &=sum_k=1^inftyfrac(-1)^k+1k int_0^1(x^n(k+1)+x^n(k+1)-2)dx\
              &=sum_k=1^inftyfrac(-1)^k+1k(frac1n(k+1)+1+frac1n(k+1)-1)\
              &=sum_k=1^inftyfrac(-1)^k+1k(frac2n(k+1)n^2(k+1)^2-1)\
              &=sum_k=1^inftyfrac(-1)^k+1kn(frac2(k+1)(k+1)^2-1/n^2)\
              &=sum_k=1^inftyfrac(-1)^k+1k(k+1)n(frac21-1/(n^2(k+1)^2))\
              &=frac2nsum_k=1^inftyfrac(-1)^k+1k(k+1)sum_m=0^inftyfrac1n^2m(k+1)^2m\
              &=frac2nsum_m=0^inftyfrac1n^2msum_k=1^inftyfrac(-1)^k+1k(k+1)frac1(k+1)^2m\
              &=2sum_m=0^inftyfrac1n^2m+1sum_k=1^inftyfrac(-1)^k+1k(k+1)^2m+1\
              &=2(fracln(4/e)n-frac0.110304071913...n^3+O(frac1n^5))
              qquadtext(according to Wolfy)\
              endarray
              $



              Note:
              The Inverse Symbolic Calculator
              did not find anything for
              0.110304071913.







              share|cite|improve this answer













              share|cite|improve this answer



              share|cite|improve this answer











              answered Jul 21 at 23:05









              marty cohen

              69.2k446122




              69.2k446122




















                  up vote
                  0
                  down vote













                  There is a difference in title $(colorred-)$ and body $(colorred+)$; so, I worked both cases.



                  Let us consider first
                  $$int x^a log left(1+x^bright),dx=fracx^a+1 log left(1+x^bright)a+1-frac b1+a int fracx^a+b1+x^b,dx$$
                  $$int fracx^a+b1+x^b,dx=fracx^a+b+1a+b+1 ,,,
                  _2F_1left(1,fraca+b+1b;fraca+2b+1b;-x^bright)$$ Using the given bounds and simplifying leads to
                  $$K_a,b=int_0^1 x^a log left(1+x^bright),dx=fraclog (2)-Phi left(-1,1,fraca+b+1bright)a+1qquad textif qquad Re(b)>0$$ where appears the Hurwitz-Lerch transcendent function.



                  So,
                  $$I_n=int_0^1 (x^n-x^n-2)ln(1+x^n),dx=fraclog (2)-Phi left(-1,1,frac2 n+1nright)n+1-fraclog (2)-Phi
                  left(-1,1,frac2 n-1nright)n-1$$
                  $$J_n=int_0^1 (x^n+x^n-2)ln(1+x^n),dx=fraclog (2)-Phi
                  left(-1,1,frac2 n+1nright)n+1+fraclog (2)-Phi left(-1,1,frac2 n-1nright)n-1$$



                  Now, consider the expansion of $Phi (-1,1,2+epsilon)$; it is
                  $$(1-log (2))+left(fracpi ^212-1right) epsilon +left(1-frac3 zeta
                  (3)4right) epsilon ^2+left(frac7 pi ^4720-1right) epsilon
                  ^3+left(1-frac15 zeta (5)16right) epsilon ^4+Oleft(epsilon ^5right)$$ Making $ epsilon=pm frac 1n$ and continuing with Taylor, this gives
                  $$I_n=frac4-fracpi ^26-4 log (2)n^2+frac-540 zeta (3)+2880-60 pi ^2-7 pi
                  ^4-1440 log (2)360 n^4+Oleft(frac1n^5right)$$



                  $$J_n=frac4 log (2)-2n+frac9 zeta (3)-36+pi ^2+24 log (2)6
                  n^3+Oleft(frac1n^5right)$$



                  For $J_n$, this is the same result as in marty cohen's answer, since
                  $$frac9 zeta (3)-36+pi ^2+24 log (2)6=2 times 0.110304071913700 $$



                  This seems to work quite well even for small values of $n$ as shown in the table below
                  $$left(
                  beginarrayccccc
                  n & I_n^exact & I_n^approx & J_n^exact & J_n^approx\
                  2 & -0.1120487783 & -0.1115478099 & 0.4158382364 & 0.4138703791 \
                  3 & -0.0478495232 & -0.0478071470 & 0.2659498411 & 0.2657002461 \
                  4 & -0.0265505658 & -0.0265431189 & 0.1966526582 & 0.1965941828 \
                  5 & -0.0168863305 & -0.0168843897 & 0.1563016585 & 0.1562826096 \
                  6 & -0.0116869861 & -0.0116863381 & 0.1297937520 & 0.1297861210 \
                  7 & -0.0085688906 & -0.0085686341 & 0.1110165137 & 0.1110129899 \
                  8 & -0.0065519051 & -0.0065517901 & 0.0970062707 & 0.0970044656 \
                  9 & -0.0051721371 & -0.0051720804 & 0.0861468097 & 0.0861458088 \
                  10 & -0.0041867254 & -0.0041866953 & 0.0774800710 & 0.0774794804
                  endarray
                  right)$$






                  share|cite|improve this answer



























                    up vote
                    0
                    down vote













                    There is a difference in title $(colorred-)$ and body $(colorred+)$; so, I worked both cases.



                    Let us consider first
                    $$int x^a log left(1+x^bright),dx=fracx^a+1 log left(1+x^bright)a+1-frac b1+a int fracx^a+b1+x^b,dx$$
                    $$int fracx^a+b1+x^b,dx=fracx^a+b+1a+b+1 ,,,
                    _2F_1left(1,fraca+b+1b;fraca+2b+1b;-x^bright)$$ Using the given bounds and simplifying leads to
                    $$K_a,b=int_0^1 x^a log left(1+x^bright),dx=fraclog (2)-Phi left(-1,1,fraca+b+1bright)a+1qquad textif qquad Re(b)>0$$ where appears the Hurwitz-Lerch transcendent function.



                    So,
                    $$I_n=int_0^1 (x^n-x^n-2)ln(1+x^n),dx=fraclog (2)-Phi left(-1,1,frac2 n+1nright)n+1-fraclog (2)-Phi
                    left(-1,1,frac2 n-1nright)n-1$$
                    $$J_n=int_0^1 (x^n+x^n-2)ln(1+x^n),dx=fraclog (2)-Phi
                    left(-1,1,frac2 n+1nright)n+1+fraclog (2)-Phi left(-1,1,frac2 n-1nright)n-1$$



                    Now, consider the expansion of $Phi (-1,1,2+epsilon)$; it is
                    $$(1-log (2))+left(fracpi ^212-1right) epsilon +left(1-frac3 zeta
                    (3)4right) epsilon ^2+left(frac7 pi ^4720-1right) epsilon
                    ^3+left(1-frac15 zeta (5)16right) epsilon ^4+Oleft(epsilon ^5right)$$ Making $ epsilon=pm frac 1n$ and continuing with Taylor, this gives
                    $$I_n=frac4-fracpi ^26-4 log (2)n^2+frac-540 zeta (3)+2880-60 pi ^2-7 pi
                    ^4-1440 log (2)360 n^4+Oleft(frac1n^5right)$$



                    $$J_n=frac4 log (2)-2n+frac9 zeta (3)-36+pi ^2+24 log (2)6
                    n^3+Oleft(frac1n^5right)$$



                    For $J_n$, this is the same result as in marty cohen's answer, since
                    $$frac9 zeta (3)-36+pi ^2+24 log (2)6=2 times 0.110304071913700 $$



                    This seems to work quite well even for small values of $n$ as shown in the table below
                    $$left(
                    beginarrayccccc
                    n & I_n^exact & I_n^approx & J_n^exact & J_n^approx\
                    2 & -0.1120487783 & -0.1115478099 & 0.4158382364 & 0.4138703791 \
                    3 & -0.0478495232 & -0.0478071470 & 0.2659498411 & 0.2657002461 \
                    4 & -0.0265505658 & -0.0265431189 & 0.1966526582 & 0.1965941828 \
                    5 & -0.0168863305 & -0.0168843897 & 0.1563016585 & 0.1562826096 \
                    6 & -0.0116869861 & -0.0116863381 & 0.1297937520 & 0.1297861210 \
                    7 & -0.0085688906 & -0.0085686341 & 0.1110165137 & 0.1110129899 \
                    8 & -0.0065519051 & -0.0065517901 & 0.0970062707 & 0.0970044656 \
                    9 & -0.0051721371 & -0.0051720804 & 0.0861468097 & 0.0861458088 \
                    10 & -0.0041867254 & -0.0041866953 & 0.0774800710 & 0.0774794804
                    endarray
                    right)$$






                    share|cite|improve this answer

























                      up vote
                      0
                      down vote










                      up vote
                      0
                      down vote









                      There is a difference in title $(colorred-)$ and body $(colorred+)$; so, I worked both cases.



                      Let us consider first
                      $$int x^a log left(1+x^bright),dx=fracx^a+1 log left(1+x^bright)a+1-frac b1+a int fracx^a+b1+x^b,dx$$
                      $$int fracx^a+b1+x^b,dx=fracx^a+b+1a+b+1 ,,,
                      _2F_1left(1,fraca+b+1b;fraca+2b+1b;-x^bright)$$ Using the given bounds and simplifying leads to
                      $$K_a,b=int_0^1 x^a log left(1+x^bright),dx=fraclog (2)-Phi left(-1,1,fraca+b+1bright)a+1qquad textif qquad Re(b)>0$$ where appears the Hurwitz-Lerch transcendent function.



                      So,
                      $$I_n=int_0^1 (x^n-x^n-2)ln(1+x^n),dx=fraclog (2)-Phi left(-1,1,frac2 n+1nright)n+1-fraclog (2)-Phi
                      left(-1,1,frac2 n-1nright)n-1$$
                      $$J_n=int_0^1 (x^n+x^n-2)ln(1+x^n),dx=fraclog (2)-Phi
                      left(-1,1,frac2 n+1nright)n+1+fraclog (2)-Phi left(-1,1,frac2 n-1nright)n-1$$



                      Now, consider the expansion of $Phi (-1,1,2+epsilon)$; it is
                      $$(1-log (2))+left(fracpi ^212-1right) epsilon +left(1-frac3 zeta
                      (3)4right) epsilon ^2+left(frac7 pi ^4720-1right) epsilon
                      ^3+left(1-frac15 zeta (5)16right) epsilon ^4+Oleft(epsilon ^5right)$$ Making $ epsilon=pm frac 1n$ and continuing with Taylor, this gives
                      $$I_n=frac4-fracpi ^26-4 log (2)n^2+frac-540 zeta (3)+2880-60 pi ^2-7 pi
                      ^4-1440 log (2)360 n^4+Oleft(frac1n^5right)$$



                      $$J_n=frac4 log (2)-2n+frac9 zeta (3)-36+pi ^2+24 log (2)6
                      n^3+Oleft(frac1n^5right)$$



                      For $J_n$, this is the same result as in marty cohen's answer, since
                      $$frac9 zeta (3)-36+pi ^2+24 log (2)6=2 times 0.110304071913700 $$



                      This seems to work quite well even for small values of $n$ as shown in the table below
                      $$left(
                      beginarrayccccc
                      n & I_n^exact & I_n^approx & J_n^exact & J_n^approx\
                      2 & -0.1120487783 & -0.1115478099 & 0.4158382364 & 0.4138703791 \
                      3 & -0.0478495232 & -0.0478071470 & 0.2659498411 & 0.2657002461 \
                      4 & -0.0265505658 & -0.0265431189 & 0.1966526582 & 0.1965941828 \
                      5 & -0.0168863305 & -0.0168843897 & 0.1563016585 & 0.1562826096 \
                      6 & -0.0116869861 & -0.0116863381 & 0.1297937520 & 0.1297861210 \
                      7 & -0.0085688906 & -0.0085686341 & 0.1110165137 & 0.1110129899 \
                      8 & -0.0065519051 & -0.0065517901 & 0.0970062707 & 0.0970044656 \
                      9 & -0.0051721371 & -0.0051720804 & 0.0861468097 & 0.0861458088 \
                      10 & -0.0041867254 & -0.0041866953 & 0.0774800710 & 0.0774794804
                      endarray
                      right)$$






                      share|cite|improve this answer















                      There is a difference in title $(colorred-)$ and body $(colorred+)$; so, I worked both cases.



                      Let us consider first
                      $$int x^a log left(1+x^bright),dx=fracx^a+1 log left(1+x^bright)a+1-frac b1+a int fracx^a+b1+x^b,dx$$
                      $$int fracx^a+b1+x^b,dx=fracx^a+b+1a+b+1 ,,,
                      _2F_1left(1,fraca+b+1b;fraca+2b+1b;-x^bright)$$ Using the given bounds and simplifying leads to
                      $$K_a,b=int_0^1 x^a log left(1+x^bright),dx=fraclog (2)-Phi left(-1,1,fraca+b+1bright)a+1qquad textif qquad Re(b)>0$$ where appears the Hurwitz-Lerch transcendent function.



                      So,
                      $$I_n=int_0^1 (x^n-x^n-2)ln(1+x^n),dx=fraclog (2)-Phi left(-1,1,frac2 n+1nright)n+1-fraclog (2)-Phi
                      left(-1,1,frac2 n-1nright)n-1$$
                      $$J_n=int_0^1 (x^n+x^n-2)ln(1+x^n),dx=fraclog (2)-Phi
                      left(-1,1,frac2 n+1nright)n+1+fraclog (2)-Phi left(-1,1,frac2 n-1nright)n-1$$



                      Now, consider the expansion of $Phi (-1,1,2+epsilon)$; it is
                      $$(1-log (2))+left(fracpi ^212-1right) epsilon +left(1-frac3 zeta
                      (3)4right) epsilon ^2+left(frac7 pi ^4720-1right) epsilon
                      ^3+left(1-frac15 zeta (5)16right) epsilon ^4+Oleft(epsilon ^5right)$$ Making $ epsilon=pm frac 1n$ and continuing with Taylor, this gives
                      $$I_n=frac4-fracpi ^26-4 log (2)n^2+frac-540 zeta (3)+2880-60 pi ^2-7 pi
                      ^4-1440 log (2)360 n^4+Oleft(frac1n^5right)$$



                      $$J_n=frac4 log (2)-2n+frac9 zeta (3)-36+pi ^2+24 log (2)6
                      n^3+Oleft(frac1n^5right)$$



                      For $J_n$, this is the same result as in marty cohen's answer, since
                      $$frac9 zeta (3)-36+pi ^2+24 log (2)6=2 times 0.110304071913700 $$



                      This seems to work quite well even for small values of $n$ as shown in the table below
                      $$left(
                      beginarrayccccc
                      n & I_n^exact & I_n^approx & J_n^exact & J_n^approx\
                      2 & -0.1120487783 & -0.1115478099 & 0.4158382364 & 0.4138703791 \
                      3 & -0.0478495232 & -0.0478071470 & 0.2659498411 & 0.2657002461 \
                      4 & -0.0265505658 & -0.0265431189 & 0.1966526582 & 0.1965941828 \
                      5 & -0.0168863305 & -0.0168843897 & 0.1563016585 & 0.1562826096 \
                      6 & -0.0116869861 & -0.0116863381 & 0.1297937520 & 0.1297861210 \
                      7 & -0.0085688906 & -0.0085686341 & 0.1110165137 & 0.1110129899 \
                      8 & -0.0065519051 & -0.0065517901 & 0.0970062707 & 0.0970044656 \
                      9 & -0.0051721371 & -0.0051720804 & 0.0861468097 & 0.0861458088 \
                      10 & -0.0041867254 & -0.0041866953 & 0.0774800710 & 0.0774794804
                      endarray
                      right)$$







                      share|cite|improve this answer















                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jul 23 at 3:27


























                      answered Jul 22 at 4:06









                      Claude Leibovici

                      111k1055126




                      111k1055126




















                          up vote
                          0
                          down vote













                          After using $,t:=x^n,$ we get:



                          $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (cosh z)|_z=fracln tn ln(1+t) dx$



                          $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^0](cosh z)|_z=fracln tn ln(1+t) dx = frac2 (ln 4 - 1)n $



                          $displaystyle intlimits_0^1 (x^n-x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (sinh z)|_z=fracln tn ln(1+t) dx $



                          $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^1](sinh z)|_z=fracln tn ln(1+t) dx = frac4(1 - ln 2) - fracpi^26n^2 $



                          You can use more elements of $,cosh,$ or $,sinh,$ to get closer to your integral.



                          Example:



                          $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx approx frac2nintlimits_0^1 [z^0+z^2](cosh z)|_z=fracln tn ln(1+t) dx $



                          $hspace3cmdisplaystyle =fracln 16 - 2n + frac1n^3left(frac3zeta(3)2+fracpi^26+ln 16 - 6right)$






                          share|cite|improve this answer



























                            up vote
                            0
                            down vote













                            After using $,t:=x^n,$ we get:



                            $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (cosh z)|_z=fracln tn ln(1+t) dx$



                            $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^0](cosh z)|_z=fracln tn ln(1+t) dx = frac2 (ln 4 - 1)n $



                            $displaystyle intlimits_0^1 (x^n-x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (sinh z)|_z=fracln tn ln(1+t) dx $



                            $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^1](sinh z)|_z=fracln tn ln(1+t) dx = frac4(1 - ln 2) - fracpi^26n^2 $



                            You can use more elements of $,cosh,$ or $,sinh,$ to get closer to your integral.



                            Example:



                            $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx approx frac2nintlimits_0^1 [z^0+z^2](cosh z)|_z=fracln tn ln(1+t) dx $



                            $hspace3cmdisplaystyle =fracln 16 - 2n + frac1n^3left(frac3zeta(3)2+fracpi^26+ln 16 - 6right)$






                            share|cite|improve this answer

























                              up vote
                              0
                              down vote










                              up vote
                              0
                              down vote









                              After using $,t:=x^n,$ we get:



                              $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (cosh z)|_z=fracln tn ln(1+t) dx$



                              $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^0](cosh z)|_z=fracln tn ln(1+t) dx = frac2 (ln 4 - 1)n $



                              $displaystyle intlimits_0^1 (x^n-x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (sinh z)|_z=fracln tn ln(1+t) dx $



                              $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^1](sinh z)|_z=fracln tn ln(1+t) dx = frac4(1 - ln 2) - fracpi^26n^2 $



                              You can use more elements of $,cosh,$ or $,sinh,$ to get closer to your integral.



                              Example:



                              $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx approx frac2nintlimits_0^1 [z^0+z^2](cosh z)|_z=fracln tn ln(1+t) dx $



                              $hspace3cmdisplaystyle =fracln 16 - 2n + frac1n^3left(frac3zeta(3)2+fracpi^26+ln 16 - 6right)$






                              share|cite|improve this answer















                              After using $,t:=x^n,$ we get:



                              $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (cosh z)|_z=fracln tn ln(1+t) dx$



                              $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^0](cosh z)|_z=fracln tn ln(1+t) dx = frac2 (ln 4 - 1)n $



                              $displaystyle intlimits_0^1 (x^n-x^n-2) ln(1+x^n) dx = frac2nintlimits_0^1 (sinh z)|_z=fracln tn ln(1+t) dx $



                              $hspace3cmdisplaystyle approx frac2nintlimits_0^1 [z^1](sinh z)|_z=fracln tn ln(1+t) dx = frac4(1 - ln 2) - fracpi^26n^2 $



                              You can use more elements of $,cosh,$ or $,sinh,$ to get closer to your integral.



                              Example:



                              $displaystyle intlimits_0^1 (x^n+x^n-2) ln(1+x^n) dx approx frac2nintlimits_0^1 [z^0+z^2](cosh z)|_z=fracln tn ln(1+t) dx $



                              $hspace3cmdisplaystyle =fracln 16 - 2n + frac1n^3left(frac3zeta(3)2+fracpi^26+ln 16 - 6right)$







                              share|cite|improve this answer















                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jul 23 at 13:04


























                              answered Jul 23 at 11:50









                              user90369

                              7,596925




                              7,596925




















                                  up vote
                                  0
                                  down vote













                                  If $f(n, x) = O(|g(n, x)|)$ uniformly in $x$ on $a < x < b$ and $f$ and $g$ are measurable, then $int_a^b f(n, x) dx = O(int_a^b |g(n, x)| dx)$. We have
                                  $$J_n = int_0^1 x^n ln(1 + x^n) dx =
                                  frac 1 n int_0^1 xi^1/n ln(1 + xi) dxi, \
                                  |xi^1/n - 1| leq frac 1 n |! ln xi| quad
                                  textwhen 0 < n land 0 < xi < 1, \
                                  left| J_n - frac 1 n int_0^1 ln(1 + xi) dxi right| leq
                                  -frac 1 n^2 int_0^1 ln xi ln(1 + xi) dxi,$$
                                  giving the leading term in the expansion. The complete asymptotic series for $J_n$ in powers of $n$ is
                                  $$J_n sim sum_k=1^infty
                                  int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!.$$
                                  Similarly, for
                                  $$K_n = int_0^1 x^n-2 ln(1 + x^n) dx =
                                  frac 1 n int_0^1 xi^-1/n ln(1 + xi) dxi,$$
                                  we can take
                                  $$|xi^-1/n - 1| leq frac 2 n sqrt xi quad
                                  textwhen 2 < n land 0 < xi < 1.$$
                                  The complete asymptotic series for $K_n$ is
                                  $$K_n sim sum_k=1^infty (-1)^k-1
                                  int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!,$$
                                  which is formally $-J_-n$.






                                  share|cite|improve this answer



























                                    up vote
                                    0
                                    down vote













                                    If $f(n, x) = O(|g(n, x)|)$ uniformly in $x$ on $a < x < b$ and $f$ and $g$ are measurable, then $int_a^b f(n, x) dx = O(int_a^b |g(n, x)| dx)$. We have
                                    $$J_n = int_0^1 x^n ln(1 + x^n) dx =
                                    frac 1 n int_0^1 xi^1/n ln(1 + xi) dxi, \
                                    |xi^1/n - 1| leq frac 1 n |! ln xi| quad
                                    textwhen 0 < n land 0 < xi < 1, \
                                    left| J_n - frac 1 n int_0^1 ln(1 + xi) dxi right| leq
                                    -frac 1 n^2 int_0^1 ln xi ln(1 + xi) dxi,$$
                                    giving the leading term in the expansion. The complete asymptotic series for $J_n$ in powers of $n$ is
                                    $$J_n sim sum_k=1^infty
                                    int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!.$$
                                    Similarly, for
                                    $$K_n = int_0^1 x^n-2 ln(1 + x^n) dx =
                                    frac 1 n int_0^1 xi^-1/n ln(1 + xi) dxi,$$
                                    we can take
                                    $$|xi^-1/n - 1| leq frac 2 n sqrt xi quad
                                    textwhen 2 < n land 0 < xi < 1.$$
                                    The complete asymptotic series for $K_n$ is
                                    $$K_n sim sum_k=1^infty (-1)^k-1
                                    int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!,$$
                                    which is formally $-J_-n$.






                                    share|cite|improve this answer

























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      If $f(n, x) = O(|g(n, x)|)$ uniformly in $x$ on $a < x < b$ and $f$ and $g$ are measurable, then $int_a^b f(n, x) dx = O(int_a^b |g(n, x)| dx)$. We have
                                      $$J_n = int_0^1 x^n ln(1 + x^n) dx =
                                      frac 1 n int_0^1 xi^1/n ln(1 + xi) dxi, \
                                      |xi^1/n - 1| leq frac 1 n |! ln xi| quad
                                      textwhen 0 < n land 0 < xi < 1, \
                                      left| J_n - frac 1 n int_0^1 ln(1 + xi) dxi right| leq
                                      -frac 1 n^2 int_0^1 ln xi ln(1 + xi) dxi,$$
                                      giving the leading term in the expansion. The complete asymptotic series for $J_n$ in powers of $n$ is
                                      $$J_n sim sum_k=1^infty
                                      int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!.$$
                                      Similarly, for
                                      $$K_n = int_0^1 x^n-2 ln(1 + x^n) dx =
                                      frac 1 n int_0^1 xi^-1/n ln(1 + xi) dxi,$$
                                      we can take
                                      $$|xi^-1/n - 1| leq frac 2 n sqrt xi quad
                                      textwhen 2 < n land 0 < xi < 1.$$
                                      The complete asymptotic series for $K_n$ is
                                      $$K_n sim sum_k=1^infty (-1)^k-1
                                      int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!,$$
                                      which is formally $-J_-n$.






                                      share|cite|improve this answer















                                      If $f(n, x) = O(|g(n, x)|)$ uniformly in $x$ on $a < x < b$ and $f$ and $g$ are measurable, then $int_a^b f(n, x) dx = O(int_a^b |g(n, x)| dx)$. We have
                                      $$J_n = int_0^1 x^n ln(1 + x^n) dx =
                                      frac 1 n int_0^1 xi^1/n ln(1 + xi) dxi, \
                                      |xi^1/n - 1| leq frac 1 n |! ln xi| quad
                                      textwhen 0 < n land 0 < xi < 1, \
                                      left| J_n - frac 1 n int_0^1 ln(1 + xi) dxi right| leq
                                      -frac 1 n^2 int_0^1 ln xi ln(1 + xi) dxi,$$
                                      giving the leading term in the expansion. The complete asymptotic series for $J_n$ in powers of $n$ is
                                      $$J_n sim sum_k=1^infty
                                      int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!.$$
                                      Similarly, for
                                      $$K_n = int_0^1 x^n-2 ln(1 + x^n) dx =
                                      frac 1 n int_0^1 xi^-1/n ln(1 + xi) dxi,$$
                                      we can take
                                      $$|xi^-1/n - 1| leq frac 2 n sqrt xi quad
                                      textwhen 2 < n land 0 < xi < 1.$$
                                      The complete asymptotic series for $K_n$ is
                                      $$K_n sim sum_k=1^infty (-1)^k-1
                                      int_0^1 ln^k-1 xi ln(1 + xi) dxi frac n^-k (k-1)!,$$
                                      which is formally $-J_-n$.







                                      share|cite|improve this answer















                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Jul 23 at 17:14


























                                      answered Jul 22 at 21:30









                                      Maxim

                                      2,060113




                                      2,060113






















                                           

                                          draft saved


                                          draft discarded


























                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858856%2fgive-an-asymptotic-developement-of-i-n-int-01-xn-xn-2-ln1xndx%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          Comments

                                          Popular posts from this blog

                                          What is the equation of a 3D cone with generalised tilt?

                                          Color the edges and diagonals of a regular polygon

                                          Relationship between determinant of matrix and determinant of adjoint?